PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Input data selection for road traffic control systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Selekcja danych wejściowych dla systemów sterowania ruchem drogowym
Języki publikacji
EN
Abstrakty
EN
Emerging technologies in road traffic monitoring deliver communication solutions for wireless data transfers from mobile sensors. The availability of mobile sensors creates a huge opportunity to extend the road-side detection infrastructure of existing traffic control systems. The efficient use of the wireless communication medium is one of the basic issues in traffic monitoring systems development. In this paper a new method is proposed for input data selection in traffic control systems. The basic idea behind the input data selection is to recognise the necessity of data transfers through the uncertainty analysis of the traffic control decisions. The introduced algorithm selects time instances of input data that are transmitted from the traffic monitoring system to the control unit. The rejected measurement data are replaced by information granules produced by an on-line traffic simulation. If precision of the information granules decreases and the control decisions become uncertain then the current data readings have to be transferred. This principle enables a considerable reduction of the data volumes that have to be transmitted from traffic monitoring system. Processing of the measurement data is based on information granulation within fuzzy cellular traffic model. This technique allows the incomplete traffic information to be used for performance evaluation of control strategies and for uncertainty estimation of control decisions. Simulation experiments were performed to investigate the usefulness of this method for traffic control at signalised intersection.
PL
Bezprzewodowe technologie komunikacyjne umożliwiają zastosowanie czujników mobilnych w systemach monitorowania ruchu drogowego. Dostępność tego typu czujników w znaczący sposób rozszerza możliwości pozyskiwania danych dla sterowania ruchem drogowym. Wykorzystanie bezprzewodowych systemów monitorowania ruchu dla celów sterowania wymaga odpowiednich metod optymalizacji transmisji danych. W niniejszym artykule przedstawiono metodę selekcji danych wejściowych dla systemów sterowania ruchem drogowym, która pozwala zmniejszyć rozmiar przesyłanych zbiorów danych. Zgodnie z zaproponowaną metodą, konieczność pobrania danych pomiarowych jest określana w kolejnych interwałach czasu na podstawie oceny niepewności decyzji sterujących. Dane pomiarowe są rejestrowane i przekazywane z systemu monitorowania ruchu do modułu sterowania tylko w wybranych krokach czasowych. Przetwarzanie danych pomiarowych polega na granulacji informacji z wykorzystaniem modelu ruchu. Dzięki zastosowaniu rozmytego modelu komórkowego niepełna informacja o stanie ruchu może zostać wykorzystana do oceny efektywności sterowania oraz do oszacowania niepewności decyzji sterujących. Jeżeli precyzja zgromadzonej informacji jest zbyt niska, wówczas nie jest możliwy jednoznaczny wybór optymalnego wariantu sterowania. Aby obniżyć niepewność decyzji sterującej i uzyskać wymaganą dokładność oceny efektywności sterowania, potrzebne są aktualne dane pomiarowe. Zaproponowana metoda może być stosowana m. in. w systemach sygnalizacji świetlnej, systemach sterowania ruchem za pomocą znaków zmiennej treści oraz systemach nawigacji drogowej. Skuteczność metody została wykazana na podstawie wyników badań symulacyjnych dla przykładowego systemu sterowania sygnalizacją świetlną na skrzyżowaniu.
Rocznik
Strony
225--247
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Transport, Katowice
Bibliografia
  • 1. Abishek C., Kumar M., Kumar P.: City traffic congestion control in Indian scenario using wireless sensors network. In: Proceedings of Fifth IEEE Conference on Wireless Communication and Sensor Networks WCSN 2009, pp. 1-6, 2009.
  • 2. Amin S. et al.: Mobile century-using GPS mobile phones as traffic sensors: a field experiment. In: Proceedings of the 15th World congress on Intelligent Transportation Systems, 2008.
  • 3. Chu D., Deshpande A., Hellerstein J., Hong W.: Approximate data collection in sensor networks using probabilistic models. In: Proc. of the 22nd Int. Conf. on Data Engineering ICDE '06, pp. 48-60, 2006.
  • 4. Chuah C.N., Du H., Ghosal D., Khorashadi B., Liu B., Smith C., Zhang H.M.: Distributed vehicular traffic control and safety applications with VGrid. In: Proceedings of IEEE Wireless Hive Networks Conference WHNC 2008, pp. 1-5, 2008.
  • 5. Clarridge A., Salomaa K.: A Cellular Automaton Model for Car Traffic with a Slow-to-Stop Rule. In: Maneth, S. (Ed.) Implementation and Application of Automata, Lecture Notes in Computer Science 5642. Springer-Verlag, Berlin, Heidelberg, pp. 44-53, 2009.
  • 6. Collins K., Muntean G.M.: A vehicle route management solution enabled by Wireless Vehicular Networks. In: Proceedings of 2008 IEEE INFOCOM Workshops, pp. 1-6, 2008.
  • 7. Cuckov F., Song M.: Geocast-Driven Structureless Information Dissemination Scheme for Vehicular Ad Hoc Networks. In: Proceedings of IEEE Fifth International Conference on Networking, Architecture and Storage NAS 2010, pp. 325-332, 2010.
  • 8. Dornbush S., Joshi A.: StreetSmart Traffic: Discovering and Disseminating Automobile Congestion Using VANET's. In: Proc. of the 65th IEEE Vehicular Technology Conf. VTC2007, pp. 11-15, 2007.
  • 9. Gradinescu V., Gorgorin C., Diaconescu R., Cristea V., Iftode L.: Adaptive Traffic Lights Using Car-to-Car Communication. In: Proceedings of the 65th IEEE Vehicular Technology Conference VTC2007-Spring, pp. 21-25, 2007.
  • 10. Hossain E., Chow G., Leung V.C.M., McLeod R.D., Misic J., Wong V.W.S, Yang O.: Vehicular telematics over heterogeneous wireless networks: A survey. Computer Communications 33 (7), pp. 775-793, 2010.
  • 11. Hull B., Bychkovsky V., Zhang Y., Chen K., Goraczko M., Miu A., Shih E., Balakrishnan H., Madden S.: CarTel: A Distributed Mobile Sensor Computing System. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems SenSys'06, pp. 125-138, 2006.
  • 12. Hung C.C., Peng W.C.: Model-Driven Traffic Data Acquisition in Vehicular Sensor Networks. In: Proceedings of 39th Int. Conf. on Parallel Processing ICPP 2010, 424-432, pp. 13-16, 2010.
  • 13. Inoue S., Shozaki K., Kakuda Y.: An Automobile Control Method for Alleviation of Traffic Congestions Using Inter-Vehicle Ad Hoc Communication in Lattice-Like Roads. In: Proceedings of 2007 IEEE Globecom Workshops, pp. 1-6, 2007.
  • 14. Kawalec P.: Analiza i synteza specjalizowanych układów modelowania i sterowania ruchem w transporcie. Prace Naukowe Politechniki Warszawskiej, Transport, z. 68. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2009.
  • 15. Kosinski W.: On Fuzzy Number Calculus and Some Application. In: Rutkowski L. et al. (Eds.) Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science 4029. Springer-Verlag, Berlin, Heidelberg, pp. 250-259, 2006.
  • 16. Kosonen I.: Multi-agent fuzzy signal control based on real-time simulation. Transportation Research, Part C: Emerging Technologies 11 (5), pp. 389-403, 2003.
  • 17. Kulik L., Tanin E., Umer M.: Efficient Data Collection and Selective Queries in Sensor Networks. In: Nittel S. et al. (Eds.) GeoSensor Networks, Lecture Notes In Computer Science 4540. Springer-Verlag, Berlin, Heidelberg, pp. 25-44, 2008.
  • 18. Lee U., Gerla M.: A survey of urban vehicular sensing platforms. Computer Networks 54 (4), pp. 527-544, 2010.
  • 19. Lo C.H., Chen C.W., Lin T.Y., Lin C.S., Peng W.C.: CarWeb: A Traffic Data Collection Platform. In: Proceedings of 9th International Conference on Mobile Data Management MDM'08, pp. 221-222, 2008.
  • 20. Maerivoet S., De Moor B.: Cellular automata models of road traffic. Phys. Rep. 419, pp. 1-64, 2005.
  • 21. Min J.K., Chung C.W.: EDGES: Efficient data gathering in sensor networks using temporal and spatial correlations. Journal of Systems and Software 83 (2), pp. 271-282, 2010.
  • 22. Mohandas B.K., Liscano R., Yang O.: Vehicle traffic congestion management in vehicular ad-hoc networks, In: IEEE 34th Conference on Local Computer Networks LCN 2009, pp. 655-660, 2009.
  • 23. Nagel K., Schreckenberg M.: A cellular automaton model for freeway traffic. Journal de Physique I France 2 (12), pp. 2221-2229, 1992.
  • 24. Płaczek B.: Selective data collection in vehicular networks for traffic control applications. Transportation Research Part C, doi:10.1016/j.trc.2011.12.007, 2012.
  • 25. Płaczek B.: Performance Evaluation of Road Traffic Control Using a Fuzzy Cellular Model. In: Corchado E. et al. (Eds.) Hybrid Artificial Intelligence Systems HAIS 2011, Lecture Notes in Artificial Intelligence 6679. Springer-Verlag, Berlin, Heidelberg, pp. 59-67, 2011.
  • 26. Płaczek B.: Fuzzy Cellular Model for On-Line Traffic Simulation. In: Wyrzykowski R. et al. (Eds.) Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science 6068. Springer-Verlag, Berlin, Heidelberg, pp. 553-560, 2010.
  • 27. Płaczek B.: Przetwarzanie informacji ziarnistej w systemach sterowania ruchem drogowym. Magazyn Autostrady 10(10), s. 98-105, 2010.
  • 28. Płaczek B.: A real time vehicles detection algorithm for vision based sensors. In: Bolc L. et al. (Eds.) Computer Vision and Graphics ICCVG 2010, Part II. Lecture Notes in Computer Science, LNCS 6375, Springer-Verlag, Berlin Heidelberg, pp. 211-218, 2010.
  • 29. Płaczek B.: Vehicles Recognition Using Fuzzy Descriptors of Image Segments. In: Kurzyński M. et al. (eds.) Advances in Soft Computing. Computer Recognition Systems 3. Springer-Verlag, Berlin Heidelberg, pp. 79-86, 2009.
  • 30. Płaczek B.: The granular computing implementation for road traffic video-detector sampling rate finding. Transport Problems, Volume 3, Issue 4, Part 2, pp. 55-62, 2009.
  • 31. Puggioni G., Gelfand A.E.: Analyzing space-time sensor network data under suppression and failure in transmission. Statistics and Computing 20 (4), pp. 409-419, 2010.
  • 32. Reis I., Câmara G., Assuncão R., Monteiro M.: Suppressing temporal data in sensor networks using a scheme robust to aberrant readings. Int. J. of Distributed Sensor Networks 5 (6), pp. 771-805, 2010.
  • 33. Saleet H., Basir O.: Location-Based Message Aggregation in Vehicular Ad Hoc Networks. In: Proceedings of 2007 IEEE Globecom Workshops, pp. 1-7, 2007.
  • 34. Salhi I., Cherif M.O., Senouci S.M.: A New Architecture for Data Collection in Vehicular Networks. In: Proceedings of IEEE International Conference on Communications ICC'09, pp. 1-6, 2009.
  • 35. Sevastianov P.: Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory. Information Sciences 177 (21), pp. 4645-4661 2007.
  • 36. Siergiejczyk M.: Efektywność eksploatacyjna systemów telematyki transportu. Prace Naukowe Politechniki Warszawskiej, Transport, z. 67. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2009.
  • 37. Sikdar B.: Design and analysis of a MAC protocol for vehicle to roadside networks. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp. 1691-1696, 2008.
  • 38. Silberstein A., Braynard R., Yang J.: Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 157-168, 2006.
  • 39. Sun J.Z.: Using Packet Combination in Multi-query Optimization for Data Collection in Sensor Networks. In: Zhang, H. et al. (Eds.) Mobile Ad-Hoc and Sensor Networks, Lecture Notes in Computer Science 4864. Springer-Verlag, Berlin, Heidelberg, pp. 645-656, 2007.
  • 40. Toor Y., Muhlethaler P., Laouiti A.: Vehicle Ad Hoc Networks: applications and related technical issues. IEEE Communications Surveys & Tutorials, 10 (3), pp. 74-88, 2008.
  • 41. Wang Z., Kulik L., Ramamohanarao K.: Proactive traffic merging strategies for sensor-enabled cars. In: Proc. of the Fourth ACM Int. Workshop on Vehicular Ad Hoc Networks VANET '07, pp. 39-48, 2007.
  • 42. Wedde H.F., Lehnhoff S., Bonn B.: Highly dynamic and scalable VANET routing for avoiding traffic congestions. In: Proceedings of the Fourth ACM International Workshop on Vehicular Ad Hoc Networks VANET '07, pp. 81-82, 2007.
  • 43. Wenjie C., Lifeng C., Zhanglong C., Shiliang T.: A realtime dynamic traffic control system based on wireless sensor network. In: Proceedings of International Conference Workshops on Parallel Processing ICPP 2005, pp. 258-264, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ4-0024-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.