PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methane production from fat-rich materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Produkcja metanu z substratów bogatych w tłuszcze
Języki publikacji
EN
Abstrakty
EN
Waste materials containing a lot of fats seem to be an attractive substrate for production of methane through the fermentation process. Yet, due to a changing content of reagents and the high concentration of higher fatty acids, they must be stabilized along with other biodegradable wastes in the process of co-fermentation. This process results in a higher fermentation-grade and a greater volume of produced biogas. However, the methane fermentation of sewage sludges or sewage containing higher fatty acids may be problematical, and requires widespread studies in order to get a better understanding of this process.
PL
Odpady zawierające wysoką zawartość tłuszczów wydają się najbardziej atrakcyjnym substratem do produkcji metanu w procesie fermentacji. Z uwagi na zmienny skład reagentów oraz znaczne stężenia wyższych kwasów tłuszczowych muszą być one stabilizowane z innymi biodegradowalnymi odpadami w procesie kofermentacji. W procesie kofermentacji dochodzi do rozcieńczenia substancji toksycznych oraz poprawy równowagi nutrientowej. Ponadto obserwuje się wyższy stopień przefermentowania osadów i większą produkcję biogazu. Podczas stabilizacji beztlenowej, tłuszcze w pierwszym etapie są hydrolizowane do wyższych kwasów tłuszczowych oraz glicerolu. W kolejnych fazach wyższe kwasy tłuszczowe oraz glicerol rozkładane są do kwasów lotnych, octanu i wodoru. Mimo, że hydroliza uważana jest za fazę limitującą jeden z etapów konwersji tłuszczy, niektórzy autorzy wskazują iż proces ten zależy od czasu zatrzymania osadu (SRT). Przy SRT poniżej 8 dni dochodzi do akumulacji wyższych kwasów tłuszczowych i inhibicji całego procesu fermentacji. Jednakże fermentacja metanowa osadów ściekowych lub ścieków zawierających tłuszcze na wysokim poziomie może być problematyczna. Główne problemy spowodowane przez tłuszcze podczas stabilizacji beztlenowej to pienienie, flotacja osadów, zapychanie się instalacji oraz nieprzyjemne odory. Tak więc kofermentacja odpadów z dużą zawartością tłuszczy może być problematyczna i wymaga dalszych badań mających na celu wyjaśnienie tego procesu.
Rocznik
Tom
Strony
147--162
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
autor
autor
  • Czestochowa University of Technology, Faculty of Engineering and Environmental Protection, Institute of Environmental Engineering Brzeźnicka st. 60A, 42–200 Częstochowa, Poland, mworwag@is.pcz.czest.pl
Bibliografia
  • 1. Alosta H., Lalman J.A., Jing D., Bellmer D., Glucose fermentation in the presence of linoleic, oleic and stearic acids by a mixed culture. Journal of Chemical Technology and Biotechnology 79(2004) 327-334
  • 2. Alvarez Rene, Lide Gunnar. Semi-Continuous Co-Digestion Of Solid Slaughterhouse Waste, Manure, And Fruit And Vegetable Waste. Renewable Energy 33 (2008) 726-734
  • 3. Alves M.M., Mota Viera J.A., Alvares Pereira R.M., Pereira M.A., Mota M., Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability. Water Research 35 (2001) no.1, 264-270
  • 4. Alves M.M., Pereira M.A., Sousa D., Cavaleiro A.J., Picavet M., Smidt H., Stans A.J.M., Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA): Minireview. Microbial Biotechnology (2009) 2(5), 538-550
  • 5. Angelidaki I. And Ahring B.K., Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Applied Microbiology and Biotechnology (1992) 37: 808-812
  • 6. Borja R., Banks C.J., Wang Z., Mancha A., Anaerobic Digestion Of Slaughterhouse Wastewater Using A Combination Sludge Blanket And Filter Arrangement In A Single Reactor.,Bioresour.Technol. 65 (1998), 125-133.
  • 7. Bougrier C., Delgenes J.P., Carrere H., Impacts of thermal pre-treatments on the semi-continous anaerobic digestion of waste activated sludge. Biochemical Engineering Journal 34 (2007) 20-27
  • 8. Brooksbank A. M. , Latchford J. W., Mudge S. M., Degradation And Modification Of Fats, Oils And Grease By Commercial Microbial Supplements, World J Microbiol Biotechnol, 23 (2007), 977-985
  • 9. Caraballa M., Vestratete W., Anaerobic Digesters For Digestion Of Fat-Rich Materials, Handbook Of Hydrocarbon And Lipid Microbiology, 2010
  • 10. Casado A. G, Hernández E. J. A, Espinosa P., Determination Of Total Fatty Acid (C8-C22) In Sludges By Gas Chromatography - Mass Spectrometry, Journal Of Chromatography A, 826 (1998), 49-56,
  • 11. Cavaleiro A.J., Pereira M.A., Alves M. (2008) Enhancement of methane production from long chain fatty acid based effluents, Bioresource Technology 99, 4086-4095
  • 12. Chipasa K.B., Mędrzycka K., Behavior of lipids In biological wastewater Treatment processes: review. J Ind Microbiol Biotechnol (2006) 33: 635-645
  • 13. Cirne D.G., Bjornsson L., Alves M., Mattiasson B., Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid- rich waste. Journal of Chemical Technology and Biotechnology 81 (2006) 1745-1752
  • 14. Cirne D.G., Paloumet X., Bjornsson L., Alves M.M., Mattiasson B., Anaerobic digestion of lipid- rich waste- Effects of lipid concentration. Renewable Energy 32(2007) 965-975
  • 15. Chen Y., Cheng J.J., Creamer K.S., Inhibition Of Anaerobic Digestion Process: A Review, Bioresource Technology, 99 (2008) 4044-4064, 2008;
  • 16. Davidsson A., Lövstedt C., La Cour Jansen J., Gruvberger C., Aspergen H., Codigestion Of Grease Trap Sludge And Sewage Sludge, Waste Management, 28 (2008) 986-992
  • 17. Debik E., Coskun T., Use Of The Static Granular Bed Reactor (Sgbr) With Anaerobic Sludge To Treat Poultry Slaughterhouse Wastewater And Kinetic Modeling, Bioresource Technology, 100 (2009), 2777-2782
  • 18. Fernández A., Sánchez A., Font X., Anaerobic Co-Digestion Of A Simulated Organic Fraction Of Municipalsolid Wastes And Fats Of Animal And Vegetable Origin, Biochemical Engineering Journal, 26 (2005) 22-28
  • 19. Gonçalves M.R., Costa J.C., Marques I.P., Alves M.M., Inoculum acclimation to oleate promotes the conversion of olive mill wastewater to methane, Energy 36 (2011) 2138-2141
  • 20. Goncalves M., Joyce A., Alves M., Correia J.P., Marques I.P., Anodic oxidation of oleate for wastewater treatment. Desalination 185 (2005) 351-355
  • 21. Hanaki K., Matsuo T., Nagase M., Mechanism Of Inhibition Caused By Long-Chain Fatty Acids In Anaerobic Digestion Process, Biotechnol Bioeng 23 (1981) 1591-1610
  • 22. Hawkes F.R., Donnelly T., Anderson G.K. (1995), Comperative performance of anaerobic digester operating on ice-cream wastewater, Water Res., 29, 525-533.
  • 23. Hejnfelt A. and Angelidaki I., Anaerobic digestion of slaughterhouse by-products. Biomass and Bioenergy 33 (2009) 1046-1054
  • 24. Hwu C.S., Donlon B., Lettinga G., Comparative toxity of long-chain fatty acid to anaerobic sludges from various origins. Wat. Sci. Tech. (1996) 34, no. 5-6, 351-358
  • 25. Hwu C.S., Tseng S.K., Yuan C.Y., Kulik Z., Lettinga G. (1998) Biosorption of long-chain fatty acids in UASB treatment process, Water. Res., 32, 1571-1579.
  • 26. Kabouris J.C., Tezel U., Pavlostathis S. G., Engelmann M., Dulaney J., Gillette R.A., Todd A.C., Methane Recovery From The Anaerobic Codigestion Of Municipal Sludge And Fog, Bioresource Technology, 100 (2009) 3701-3705
  • 27. Kim, S. H., Han S. K., Shin H. S., Two-Phase Anaerobic Treatment System For Fat-Containing Wastewater, J. Chem. Tech. Biotechnol., 79 (2004), 63-71
  • 28. Kim I., Kim S.H., Shin H. S., Jung J.Y., Anaerobic Lipid Degradation Through Acidification And Methanization, J. Microbiol. Biotechnol., 20 1 (2010), 179-186
  • 29. Kim, S.-H., Han, S.-K., And Shin, H.-S., Kinetics of Lcfa Inhibition On Acetoclastic Methanogenesis, Propionate Degradation And Β-Oxidation. J Environ Sci Health A Tox Hazard Subst Environ Eng , 39 (2004), 1025-1037 (Tylko Tabela 2)
  • 30. Komatsu T, Hanaki K., Matsuo T., Prevention Of Lipid Inhibition In Anaerobic Processes By Introducing A Two-Phase System, Wat Sci Tech , 23 (1991), 1189-1200
  • 31. Koster I.W. and Cramer A., Inhibition of Methanogenesis from Acetate in Granular Sludge bz Long-Chain Fattz Acids. Applied and Environmental Microbiology (1987) vol. 53, no. 2, 403-409
  • 32. Lalman J.A., Bagley D.M., Anaerobic Degradation And Methanogenic Inhibitory Effects Of Oleic And Stearic Acids,Wat. Res., 35 12 (2001), 2975-2983
  • 33. Lalman J.A., Bagley D.M., Anaerobic Degradation And Inhibitory Effects of Linoleic And Acids,Wat. Res., 34 17 (2000), 4220-4228
  • 34. Lansing S., Martin J.F., Botero R.B., Nogueira da Silva T., Dias da Silva D., Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease. Bioresource Technology 101 (2010) 4362-4370
  • 35. Luostarinen S., Luste S., Sillanpaa M., Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresource Technology 100 (2009) 79-85
  • 36. Luste S. and Luostarinen S., Anaerobic co-digestion of meat-processing by-products and sewage sludge- Effect of hygienization and organic loading rate. Bioresource Technology 101 (2010) 2657-2664
  • 37. Manjunath N. T., Mehrotra I., Mathur P., Treatment of Wastewater From Slaughterhouse By Daf-Uasb System, Wat. Res., 34, 6 (2000), 1930-1936
  • 38. Martín-González L., Colturato L.F., Font X., Vicent T., Anaerobic Co-Digestion of The Organic Fraction of Municipal Solid Waste With Fog Waste From A Sewage Treatment Plant: Recovering A Wasted Methane Potential And Enhancing The Biogas Yield, Waste Management, 30 (2010), 1854-1859
  • 39. Masse L., Masse D.I., Kennedy K.J., Chou S.P., Neutral Fat Hydrolysis and Long-Chain Fatty Acids Oxidation During Anaerobic Digestion of Slaughterhouse Wastewater. Biotechnology and Bioengineering (2009) 79 no. 1, 43-52
  • 40. Mouneimne A.H., Carrere H., Bernet N., Delgenes J.P., Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresource Technology 90 (2003) 89-94
  • 41. Najafpour G.D., Zinatizadeh A.A.L., Mohamed A.R., Hasnain Isa M., Nasrollahzadeh H., High-Rate Anaerobic Digestion of Palm Oil Mill Effluents In An Upflow Anaerobic Sludge-Fixed Film Bioreactor. Process Biochem, 41 (2006), 370-379
  • 42. Oh S.T. and Martin A., Long chain fatty acids degradation in anaerobic digester: Termodynamic equilibrium consideration. Process Biochemistry 45(2010) 335-345
  • 43. Palmowski L., Simons L., Brooks R., Ultrasonic treatment to improve anaerobic digestibility of dairy easte streams. Water Science of Technology (2006) 53(8), 281-288
  • 44. Perle M., Kimchie S. and Shelef G. (1995) Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res 29: 1549-1554.
  • 45. Pereira M.A., Mota M., Alves M.M. (2002), Operation of anaerobic filter and EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality, Process Biochemistry, 1025-1031.
  • 46. Pereira M.A., Pires O.C. Mota M., Alves N.M., Anaerobic Biodegradation of oleic and Palmitic Acids: Evidence of Mass Transfer Limitations Caused by Long Chain Fatty Acid Accumulation onto thr Anaerobic Sludge. Biotechnology and Bioingineering (2005) vol. 91, no. 1, 15-23
  • 47. Petruy R., Lettinga G., Digestion Of A Milk-Fat Emulsion, Bioresource Technology, 61, 2 (1997), 141-149;
  • 48. Ramasamy E,V., Gajalakshmi S., Sanjeevi R., Jithesh M.N., Abbasi S.A. (2004), Feasibility studies on the treatmentof dairy wastewater with upflow anaerobic sludge blanket reactors, 209-212.
  • 49. Rinzema A. (1993) Anaerobic digestion of long-chain fatty acids in UASB and expended granular sludge bed reactors. Porcess Biochemistry, 28, 527-537
  • 50. Rinzema A. (1988) Anaerobic treatment of wastewater with high concentration of lipids or sulfate, PhD thesis, Wageningen, The Netherlands, Wageningen Agricultural University.
  • 51. Rodriguez-Martinez J., Rodriguez-Garza I., Pedraza-Flores E., Balagurusamy N., Sosa-Santillan G., Garza-Garcia Y., Kinetics of Anaerobic Treatment of Slaughterhouse Wastewater In Batch And Upflow Anaerobic Sludge Blanket Reactor, Bioresource Technology, 85 (2002), 235-241
  • 52. Rosenwinkel K. H., Meyer H., Anaerobic Treatment of Slaughterhouse Residues In Municipal Digesters, Water Sci. Technol., 40 1 (1999), 101-111
  • 53. Ruiz, I.; Veiga, M. C.; Santiago, P. De.; Blázquez, R., Treatment of Slaughterhouse Wastewater In A Uasb Reactor And Reactor An Anaerobic Filter, Bioresource Technology, 60 (1997) , 251-258.
  • 54. Salminen E., Rintala J., Anaerobic Digestion of Organic Solid Poultry Slaughterhouse Waste - A Review, Bioresource Technology 83 (2002) 13-26
  • 55. Salminen E.A., Rintala J.A., Anaerobic Digestion of Poultry Slaughtering Wastes. Environ. Technol., 20 (1999), 21-28
  • 56. Silvestre G., Rodriguez-Abalde A., Fernandez B., Bonmati A., Accumulation of Long Chain Fatty Acids during mesophilic and thermophilic co-digestion of Sewage Sludge with Trapped Grease Waste. Congress Mexico (2010)
  • 57. Sousa D.Z., Balk M., Alves M., Schink B., McInerney M.J., Smidt H., Plugge C.M., Stams A.J., Degradation of Long-Chain Fatty Acids by Sulfate-Reducing and Methanogenic Communities, Handbook of Hydrocarbon And Lipid Microbiology, 2010
  • 58. Zhang L., Lee C.H., Jahng D., Restriction of linoleic acid inhibition of methanization of piggery wastewater and enhancement of its mineralization by adding calcium ions. Journal of Chemical Technology and Biotechnology (2010) 86(2), 282-289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ4-0021-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.