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The flow of particles suspended in fluids and tpamted through different geometries is
a process with numerous applications. Realistierfl have randomly-interconnected
channel space with complex flow path. However, ioro¥luidic systems, channel space
may resemble two-dimensional (2D) tessellation. eHere adopt the network flow
concept to analyze 2D micro-filters and study therfefficiency and the clogging time.
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1. INTRODUCTION

The geometrical and statistical properties of netware the focous of research
efforts in the fields of computer science, mathéraatbiology, statistical
physics and technology. A lot of systems operate t&go-dimensional network
and numerous devices are constructed in a plashiofa Examples are grids of
processors, radar arrays, wireless sensor netwasksell as a wide range of
micromechanical devices. Especially, the microfluglystems are built with the
use of methods borrowed from the semiconductordtrgi1]. Such methods
generally employ the fabrication of highly orderedcroscale structures.
Molecular filtration using nanofilters is an impant engineering problem, with
very diverse applications ranging from chemical gessing to biological
applications. Biochemical analysis of aqueous smist involves the flow of
particles of different shapes suspended in fluidsl @aransported through
different geometries. A filtrate particle flowingrough the pore space may be
trapped by the geometric constraint or other adkesiechanisms. Realistic
filters have randomly-interconnected channel spaite complex flow path.
However, in microfluidic systems, channel space magemble two-
dimensional tessellation [1], [5], [11]. Here, therm “channel” refers to
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a conduit of any desirable shape through whichidisiumay be directed and the
term “microfluidic” refers to the structure whereame or more dimensions is
less than 1®m. The problem we consider is the clogging process

a hypothetical microfilter with the channel spacgltbup according to a given

two dimensional tessellation. The objective of mwuestigation is to determine
the role played by the network geometry in thiscess provided that the flow
of liquid and suspended molecules is laminar.

2. TECHNOLOGICAL ASPECTS

Physical and technological constituents of netwemiployed in mass transport
cover waste range of size scale from huge oil llagians with macroscopic
pipes to nano-fabricated channels transporting tedalie sets of molecules [1].
Such nano-scale transport primarily exists in thaladvof biology where the
nanofluidic channels present in living organismbvee nutrients into cells and
evacuate waste from cells. A class of artificidliypricated systems can even
organize particles’ transport in a network-like manwith no material-channel-
structure inside it, as is the case of systemsngpim an optical lattice [16] or
the Maragoni flows induced in thin liquid films ftihe purpose of microfluidic
manipulations. In this latter case such deviceshasnels, filters or pumps are
completely virtual. They have no physical structangl do their job by localized
variation in surface tension due to the presendeaf sources suspended above
the liquid surface [3].

In this contribution, we pay special attention ticrofluidic devices.
They are constructed in a planar fashion [5] ampicglly comprise at least two
flat substrate layers that are mated together fmalgéhe channel networks.
Channel intersections may exist in a number of &snincluding cross
intersections, “T” intersections, or other struesikvhereby two channels are in
fluid communication [11]. Due to the small dimensiof channels the flow of
the fluid through a microfluidic channel is chaextted by the Reynolds
number of the order less than 10. In this regime ftbw is predominantly
laminar and thus molecules can be transportedétatively predictable manner
through the microchannel.

3. TWO DIMENSIONAL MICRONETWORKS

Numerous channel arrangements forming networks @meountered in
technology. Apart from random arrangements an itambrclass of networks,
with dedicated channel architecture, is employed mitroelectronic and
microfluidic devices. Especially, the ordered-chalrspace networks are



NETWORK FLOW MODEL FOR MICROFILTRATION 55

interesting from the theoretical point of view amdso because of their
applicability in filters.

3.1. Network geometry

These ordered networks have channel spaces baoilhdrthe lattices known in
the literature as Archimedean and the Laves |a&ti§®]. For a given
Archimedean lattice all its nodes play the same tiolis, from the mathematical
point of view, all the Archimedean lattices are fthénite transitive planar
graphs. They divide the plane into regions, calfades, that are regular
polygons. There exist exactly 11 Archimedean lasticThree of them: the
triangular, square and hexagonal lattices are ititt only one type of face (see
Fig. 1) whereas the remaining eight lattices needenthan one type of face.
The former lattices belong to the regular tesselat of the plane and the latter
ones are called semiregular lattices.

(b)
Fig. 1. Regular Archimedean lattices: (a) hexagafglsquare and (c) triangular.

Another important group of lattices contains dualtites of the
Archimedean ones. The given lattiGecan be mapped onto its dual lattR&
in such a way that the center of every faceGois a vertex inDG, and two
vertices inDG are adjacent only if the corresponding face&ishare an edge.
The square lattice is self-dual, and the triangalad hexagonal lattices are
mutual duals. The dual lattices of the semireglaltiices form the family called
Laves lattices. Finally, there are 19 possible l@garrangements of channel
spaces.

The lattices are labeled according to the way #reydrawn [9]. Starting
from a given vertex, the consecutive faces aredisty the number of edges in
the face, e.g. a square lattice is labeled as, @,4) or equivalently as (%
Consequently, the triangular and hexagonal lattiees (3) and (6),
respectively. Other, frequently encountered lastiegee (3, 6, 3, 6) — called
Kagomé lattice and its dud@(3, 6, 3, 6) - known as Necker Cube lattice. In
some ways these 5 lattices serve as an ensembteseamative to study
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conduction problems in two dimension. They formrgadf mutually dual
lattices and also share some local propertiesgaghe coordination number
being the number of edges with common vertex.

Besides the above mentioned lattices, in this pagenave also analyzed
other tiling, namely (3, £2 (4, 8), D(4, &), (3, 4), andD(3?, 4°). Some of
these lattices are presented in Fig. 1.

3.2. Percolation phasetransition

Percolation theory is a mathematical concept whierges connectivity and
transport in complex networks. It deals with thermectivity regarded as the
possibility to find an accessible route betweemmteal nodes of a given
network. The physical side of percolation reliestba possibility to pass an
amount of transported medium through this accessdlte.

Percolation theory was invented in order to expthmfluid behaviour in
a porous material with randomly clogged channels@énsider a network with
two terminals, source and sink, and assume thatfomdtion of the channels is
accessible to transport. If this part of conductithgnnel is spanned between the
source and the sink then the network is in the gotilg phase with nonzero
conductibility [6]. If the fraction of channels, a@lable for a medium flow, is
not sufficient to connect these two reservoirsfibe conductance vanishes and
the network becomes locked. This threshold fractbnvorking channels for
which the network enters the non-conducting phaseailed the percolation
threshold and this phase change is known as theolpéipn transition. If,
instead of blocked channels, we consider the remsporting nodes of the
lattice then we deal with the so-called site peatioh. Here we are mainly
interested in the case of non-transporting chansele/e will evoke the bond
percolation transition at the bond percolationshdd (Table 1).

Table 1. Bond percolation thresholds for networhalgsed in this work.

Lattice Bond percolation threshatd
(3% triangular 0.3473
(4% square 0.5000
(6> hexagonal 0.6527
(3, 6, 3, 6) 0.5244
D(3, 6, 3, 6) 0.4756
4, 8 0.6768
D(4, &) 0.2322
(3,8 0.4196
D(3, 4) 0.5831
(3, 12) 0.7404
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4. EFFICIENCY OF LIQUID TRANSFER THROUGH
ARCHIMEDEAN AND LAVESLATTICES

The problem we consider is the conductibility ofe tmetworks with
Archimedean and Laves channel-network geometriesfatus our analysis on
the filter efficiency represented by a drop in diltpermeability [7], [10].
Assume that a hypothetic flow of particles transgperby fluid is operated by
the network whose channels are arranged accordine edges of a given
lattice. We apply the network flow language. Irstiramework, all channels are
characterized by their capacitanc€azsThese capacitances are quenched random
variables governed by a uniform probability distitibn defined in the range
[0, 1] to assureC = O for the clogged channel afi= 1 for the fully opened
channel. We define the filter’s effective condutitip as follows

1
ACuCorr )= o 0(C.Cyr ) @)
0
where®(Cy, C,, ..., C,) is the flux transmitted by the filter whose chalsnhave
restricted possibilities to maintain the flow ame,=®(C;=1,C,=1, ...,
C,=1).

Equation (4.1) permits to compare performance dfedint lattice
geometries in their job as a potential transportisgvork. We have computed
the average values gffor an ample set of values of length) and width )
of some of our 10 networks. As an example, in Rigve presentp for the
square lattice.
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Fig. 2. Average filter’s effective conductibilitdefined by (4.1), computed for different

values of lengthL(y) and width [y) of the square lattice. The lines are drawn u§ing)
and they are only visual guides.



58 Zbigniew DOMANSKI, Mariusz CIESIELSKI, Bozena BARAN

We have found that for all latticgshas the following form:
ALy, Ly ) = (o +a, /13 ) tan[u(Ly ), ] (4.2)

where:ay, a,, 0 are the parameters agdis the function, all dependent on the
lattice symmetry. For sufficiently long and widetwerk (4.2) is characterized
by the value of;. This one-parameter characteristic permits ustionate how
two-dimensional networks are resistant against legging. For the square,
Kagomé and hexagonal latticastakes the values: 0.237, 0.1722 and 0.1604,
respectively. Thus, the square lattice is much molmist then e.g., Kagomé
lattice even that both these lattices share theeseatue of the coordination
numberz = 4, and so their local channel arrangementsiani¢as.

5. SIZE-EXCLUSION FILTERING

Network models play an important role in microseopiescription of flows
observed in daily experiments. Among the applicatiovorth to mention is the
control of ground water contaminant transport anwdpction from oil
reservoirs. These, so-called large scale phenoménasve an ample volume
of liquid. On the other hand there are micro- oeremano-scale flows through
highly integrated microfluidic devices [11]. In shiwork we are concerned
mainly with these micro-flows problems.

Size-exclusion filtration is a process for cleaninfijuid from undesirable
molecules by passing it through a medium in ordemechanically arrest the
harmful molecules [7], [10], [17]. The connectivity the medium is modelled
by a network model. We consider a hypothetic fldwparticles transported by
fluid through the network of channels arranged adiog to the positions of the
edges of the chosen lattice. All channels are dvarized by their radii which
are quenched random variables governed by a givelapility distribution.
This distribution will be specified later. In ord&y analyze the filter clogging
process we employ a cellular automata model wighfoHlowing rules [14, 15]:

» Fluid and a patrticle of a radilenter the filter and flow inside it due to an
external pressure gradient.

» The particle can move through the channel withoifficdity if r >R,
otherwise it would be trapped inside a channel #@msl channel becomes
inaccessible for other particles.

= At an end-node of the channel, the particle hahtmse a channel out of the
accessible channels for movement.

= [f at this node there is no accessible channdbte the particle is retained in
the channel. Otherwise, if the radius of the chademnnel’ > Rthe particle
moves to the next node.
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» The movement of the particle is continued untiheitthe particle is captured
or leaves the filter.

» Each channel blockage causes a small reductidweifilter permeability and
eventually filter becomes clogged.

A minimalist requirements for the filter blockagevéstigation:

» injected particles are identical spheres with #HusR,

» the channel radius is drawn from a discrete twavppiobability distribution
function, wherea®(r > R) = p is the only model parameter.

In our minimalist model the channel space is regreed by a network of
interconnected, wide (W) and narrow (N), cylindtiggpes. Fluid containing
suspended particles flows through the filter actmydo the previously stated
rules.

We present the results of the numerical simulat@frthe above specified
filter. Every time step particles enter the filtewne particle per each accessible
entry channel and we count the timnesquired for the filter to clog. For each
analyzed geometry and for several valuegpdfom the range [0.0%] we
performed 1&simulations and then we have built empirical distiions of the
clogging timet. Herep, is the fraction of W channel for which the netwéwokt
its filtering capability. It is because of suffiaidy high p values that there exist
statistically significant number of trajectoriesrieed only by W channels and
spanned between input and output of the filter.

Our simulations yield a common observation [2],: [Ble average time
required for the filter to clog can be approximalgdhe following function:

f = taf{rp/(2p,)] (5.1)

where the values of. are in excellent agreement with the bond peramfati
thresholds of the analyzed networks (see Tabl€if).3 showst as a function
of p for selected lattices, 3 lattices out of 10 la&sieve have analyzed.

6. CONCLUSION

In this paper we have discussed transport progertie two-dimensional
networks. We heve exploited two extreme picturescallular automata
microscopic-like picture and a completely statestiapproach to an operating
network considered it as the network supportingfbv trough a collection of
randomly conducting channels. Even though the keellautomata rules are too
simple to capture the detailed interactions in thal system this approach
enable us to see how the system becomes damagsal.ti#d network flow
concept is useful to study the interplay betweewngetry and transport
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properties of ordered lattices. Its main advantaglays on a very simple

Fig. 3. Average clogging time for regular latticeslid line, triangular lattice; dashed
line, square lattice; dash-dotted line, hexagaoatsicke. The line are drawn using (5.1)
and they are only visual guides.

representation of the inner structure yet keepingorlge between the
conductibility, the geometry (lattice’s symmetrypocdination number) and the
statistical global property (bond percolation tinad).

An interesting subclass of transportation probleot, directly discussed
in this contribution, concerns the transport inisstynents that evolve in time
[12]. Each pair of neighbouring nodes is connedtg@ channel, which can be
conducting or blocked and the state of the chacim@hges in time. An example
is a network of chemically active channels thattesgp undesired molecules.
Ones the molecules are trapped by channel-bindingre€s the channel itself
becomes inactive during the chemical reaction eé¢d convert the molecules.
Keeping fixed the portion of conducting channels #volving environment
reorganises their positions. The conductibility tfe network in such
circumstances differs from that one correspondimghe static partition of
gradually clogging channels. Appropriate models ti@nsport in changing
environment deal with so-called dynamic (or stijredrcolation [13].

Even that dynamically percolated networks haveb®s®n analysed here
our efficiency analysis and cellular automata apphes are also applicable in
such case. We expect to analyse the effective abibility of two-dimensional
lattices with evolving bond-activities in the néature.
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MODEL SIECIOWY MIKROFILTRACJI
Streszczenie

Mikrouktady filtrujace charakteryzaj sic dwuwymiarowy regularm siech kanatow.
Praca dotyczy wplywu symetrii sieci na wydajadiltréw i ich odporndé¢ na zatykanie.
Uktad filtrujacy jest modelowany za pommcieci wzajemnie patzonych kanatdw,
ktérych érednice § dyskretnymi zmiennymi losowymi o zadanych rozkicta
prawdopodobigstwa. Srednice kanaléw sstak dobraneze piyn i filtrowane cazstki
przeptywaj swobodnie przez kanaty szerokf®,(za w kanatach wskich W) czastki s3
zatrzymywane. Ruch ggtki trwa do momentu jej zatrzymania w jednym zaéw lub
do momentu opuszczenia filtru. £tki 3 wprowadzane do ukladu do czasu jego
zablokowania. Analizowano sieci kanatdw o symetriaceprezentatywnych dla
dwuwymiarowych filtréw o strukturach kanaldéw odpedapcych regularnym

i pétregularnym podziatom ptaszczyzny. Z otrzymdnyistograméw czasu blokowania
filtru wynika, ze dla kadej struktury sieci kanatéw ward oczekiwana czasu blokady
ma rozhienos¢ typu tangens, gdy frakcja kanat@\staje st bliska progowi perkolacji
wigzah danej sieci. Statystycznie zbiér kanal@vzaczyna umdiwia¢ komunikacg
miedzy wegciem i wyjsciem z uktadu i uktad traci wtaséa filtruj ace.





