PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Permeability, tortuosity, and attenuation of waves in porous materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dyfuzyjność, krętność i tłumienie fal w materiałach porowatych
Języki publikacji
EN
Abstrakty
EN
The paper contains a consistent presentation of the construction of a linear poroelastic model and its applications in the theory of acoustic waves. The main purpose of this presentation is the discussion of material parameters describing the diffusion. This concerns particularly the permeability and tortuosity. In Section 2 we mention a few examples of porous systems in which diffusion processes play an important role. Section 3 contains a concise description of the two-component model describing saturated porous materials with diffusion. We point out the main features of such a system with the special emphasis of relative motion of components and changes of porosity. As a special case the governing equations of Biot's model are presented. In Section 4 we discuss the notions of permeability, hydraulic conductivity and tortuosity. In particular the notion of the tortuosity tensor is introduced. Section 5 is the primer of the nuclear magnetic resonance method of experimental determination of permeability and tortuosity in various porous materials. Finally, Section 6 contains some issues concerning the propagation of monochromatic waves and, in particular, an influence of tortuosity on speeds and attenuation.
PL
Praca zawiera zwięzłą prezentację konstrukcji liniowego modelu porospężystego i jego zastosowania w teorii fal akustycznych. Głównym celem tej prezentacji jest dyskusja parametrów materiałowych opisujących dyfuzję. Dotyczy to w szczególności dyfuzyjności i krętności. W rozdziale 2 przytaczamy kilka przykładów ośrodków porowatych, w których dyfuzja odgrywa ważną rolę. Rozdział 3 zawiera zwięzły opis modelu dwuskładnikowego dla nasyconych ośrodków porowatych z dyfuzją. Uwypuklamy główne cechy takiego układu ze szczególnym uwzględnieniem ruchu względnego składników i zmian porowatości. Jako przypadek szczególny przedstwiane są równania modelu Biota. W rozdziale 4 dyskutujemy pojęcia dyfuzyjności, przewodnictwa hydraulicznego i krętności. W szczególności wprowadzamy pojęcie tensora krętności. Rozdział 5 zawiera elementarne wiadomości dotyczące metody nuklearnego rezonansu magnetycznego w zastosowaniu do eksperymentów określających dyfuzyjność i krętność w różnych materiałach porowatych. Wreszcie rozdział 6 zawiera pewne zagadnienia związane z propagacją fal monochromatycznych, a w szczególności wpływu krętności na prędkości propagacji i tłumienie.
Rocznik
Tom
Strony
9--52
Opis fizyczny
Bibliogr. 91 poz., rys., tab., wykr.
Twórcy
  • ROSE School, c/o Eucentre, Via Ferrata 1, 27100 Pavia, Italy Institut für Thermodynamik und Verfahrenstechnik, TU Berlin, Str. des 17. Juni 135, 10623 Berlin, Germany, krzysztof_wilmanski@t-online.de
Bibliografia
  • 1. Albers B.: Makroskopische Beschreibung von Adsorptions-Diffusions-Vorgängen in porösen Körpern, Dissertation, TU-Berlin, Berlin, Logos-Verlag, 2000.
  • 2. Albers B., Wilmanski K.: On modeling acoustic waves in saturated poroelastic media, J. Engng. Mech., 131, 9 (2005) 974-985.
  • 3. Albers B., Wilmanski K.: Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials, Arch. Mech., 58, 4-5 (2006) 313-325.
  • 4. Allard J. F.: Propagation of Sound in Porous Media, Elsevier Science, 1993.
  • 5. Allen S. G., Stephenson P. C. L., Strange J. H.: Morphology of porous media studied by nuclear magnetic resonance, J. Chem. Phys., 106 (18) (1997) 7802-7809.
  • 6. Arnold J.: Mobile NMR for rock porosity and permeability, PhD-Thesis, RWTH Aachen 2007.
  • 7. Bachmat Y., Bear J.: Macroscopic Modelling of Transport Phenomena in Porous Media, 1. Continuum Approach, Trans. Porous Media, 1, (1986) 213-240.
  • 8. Balzarini M., Brancolini A., Gossenberg P.: Permeability estimation from NMR diffusion measurements in reservoir rocks, Magn. Res. Im. 16, 5-6 (1998) 601-603.
  • 9. Basser P. J., Mattiello J., LeBihan D.: MR diffusion tensor spectroscopy and imaging, Biophysical Journal, 66 (1994) 259-267.
  • 10. Basser P. J., Derek K. J.: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review, NMR Biomed., 15 (2002) 456-467.
  • 11. Basser P. J., Pajevic S.: Statistical artifacts in diffusion tensor MRI (DTMRI) caused by background noise, Magnetic Resonance in Medicine 44, (2000) 41-50.
  • 12. Bear J.: Dynamics of Fluids in Porous Media, New York, Dover Publ. 1988 (American Elsevier, 1972).
  • 13. Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media, Dordrecht, Kluwer Academic Publishers 1991.
  • 14. Bear J., Nitao J. J.: Flow and Contaminant Transport in the Unsaturated Zone, Dordrecht, Kluwer, 2005 (the first draft, private communication).
  • 15. Bear J., Cheng A. H.-D.: Modeling Groundwater Flow and Contaminant Transport (Theory and Applications of Transport in Porous Media), Dordrecht, Springer, 2010.
  • 16. Beg M. F., Dickie R., Golds G., Younes L.: Consistent realignment of 3D diffusion tensor MRI eigenvectors, Medical Imaging 2007, Image Processing, J. P. W. Pluim, J. M. Reinhardt (eds.) 1-9.
  • 17. Berryman J. G., Lumley D. E.: Inverting ultrasonic data on solid/fluid mixtures for Biot-Gassmann parameters, Proc. of the Second Int. Conf. On Mathematical and Numerical Aspects of Wave Propagation, Proc. SIAM, June 7-10, 1993, 57-68.
  • 18. Biot M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-Frequency Range, J. Acoust. Soc. Am., 28, (1956) 168-178.
  • 19. Biot M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher Frequency Range, J. Acoust. Soc. Am., 28, 2 (1956) 179-191.
  • 20. Biot M. A.: Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 34, 5 (1962) 1254-1264.
  • 21. Bloch F.: Nuclear induction, Phys. Review 70 (1946) 460-474.
  • 22. Blümich B.: Essential NMR for Scientists and Engineers, Berlin, Springer, 2005.
  • 23. Bolam A. C.: Packer K. J.: A NMR characterisation of a banded sandstone, Magn. Res. Im. 16, 5-6 (1998) 609-611.
  • 24. Boudreau B. P., Gardiner B. S., Johnson B. D.: Rate of growth of isolated bubbles in sediments with a diagenetic source of methane, Limnol Oceanogr. 46, 3 (2001) 616-622.
  • 25. Bourbie T., Coussy O., Zinszner B.: Acoustics of Porous Media, Paris, Editions Technip 1987.
  • 26. Bowen R. M.: Diffusion Models implied by the Theory of Mixtures, in: Rational Thermodynamics (Second Edition), C. Truesdell (ed.), New York, Springer, 1984, 237-263.
  • 27. Bubner N., Klein O., Philip P., J. Sprekels, Wilmanski K.: A Transient Model for the Sublimation Growth of Silicon Carbide Single Crystals, J. Crystal Growth, 205, (1999) 294-304.
  • 28. Bubner N., Klein O., Philip P., J. Sprekels, Wilmanski K.: A Radiation- and Convection-driven Transient Heat Transfer During Sublimation Growth of Silicon Carbide Single Crystals, J. Crystal Growth, 222, (2001) 832-851.
  • 29. Byrne H., Preziosi L.: Modelling solid tumor growth using the theory of mixtures, Mathematical Medicine and Biology, 20 (2003) 341-366.
  • 30. Carman P. C.: Fluid Flow Through a Granular Bed, Trans. Inst. Chem. Engn. 15 (1937) 150-156.
  • 31. Coussy O.: Mechanics of Porous Media, Chichester, John Wiley & Sons 1995.
  • 32. Edwards J. C.: Principles of NMR, Process NMR Associates LLC, 87A Sand Pit Rd, Danbury CT 06810.
  • 33. Epstein Ch.: Introduction to magnetic resonance imaging for mathematicians, Annales de l'Institut Fourier, Grenoble, 54, 5 (2004) 1697-1716.
  • 34. Epstein N.: On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous Media, Chem. Engn. Sci., 44, 3 (1989) 777-779.
  • 35. Erdmann B., Lang J., Matera S., Wilmanski K.: Adaptive Linearly Implicit Methods for Linear Poroelastic Equations, ZIP-Report 05 (2005).
  • 36. Forchheimer P.: Hydraulik Leipzig/Berlin , Teubner, 1914.
  • 37. Fuel Cell Handbook (Seventh Edition), EG&G Technical Services, Inc. Under Contract No. DE-AM26-99FT40575, Morgantown 2004.
  • 38. Greeg S. J., Sing K. S. W.: Adsorption, Surface Area and Porosity, London, Academic Press, 1982.
  • 39. Haber A., Haber-Pohlmeier S., Casanova F., Blümich B.: Relaxationrelaxation experiments in natural porous media with a portable Halbach magnet, RWTH Aachen, Report (2008).
  • 40. Haber-Pohlmeier S., Bechtold M., Stapf S., Pholmeier A.: Water flow monitored by tracer transport in natural porous media using MRI, Jülich-Report (2009).
  • 41. Hahn E., Spin echoes, Physical Review, 80 (1950)580-594.
  • 42. Hasan K. M., Parker D. L., Alexander A. L.: Magnetic resonance water selfdiffusion tensor encoding optimization methods for full brain acquisition, Image Anal Stereol, 21 (2002) 87-96.
  • 43. Howard J. J.: Quantitative estimates of porous media wettability from proton NMR measurements, Magn. Res. Im. 16, 5/6 (1998), 529-533.
  • 44. Jaeger J. C., Cook N. G. W., Zimmerman R. W.: Fundamentals of Rock Mechanics, Malden, Blackwell Publ. 2007.
  • 45. Johnson D. L., Plona T. J., Scala C.: Tortuosity and acoustic slow waves, Physical Re view Letters, 49, 25 (1982) 1840-1844.
  • 46. Johnson D. L., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379-402.
  • 47. Kozeny J.: Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung und Anwendung auf die Bewässerung), Sber. Akad. Wiss., Wien 136 (Abt. IIa) (1927) 271-306.
  • 48. Kubik J.: A macroscopic description of geometrical pore structure of porous solids. Int. J. Engn. Sci., 24, 6 (1986) 971-980.
  • 49. Kubik J., Cieszko M., Kaczmarek M.: Podstawy Dynamiki Nasyconych Ośrodków Porowatych, Warszawa, IPPT PAN, 2000.
  • 50. Kubik J., Rybicki A., Porosity of materials with a given permeability vector field (in Polish) . Warsaw, IPPT Reports 72 (1979), 15-26.
  • 51. Lai C. G., Wilmanski K.: Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks, WienNewYork, Springer 2005.
  • 52. Landau L. D., Lifschitz E. M.; Lehrbuch der theoretischen Physik. Band VI: Hydrodynamik, Berlin, Akademie-Verlag, 1991.
  • 53. Litster S., Djilali N.: Two-phase transport in porous gas diffusion electrodes, in: Transport Phenomena in Fuel Cells, B. Sunden, M. Faghri (eds.), Southampton, WIT Press 2005, 175-213.
  • 54. Lopatnikov S. L., Gillespie, Jr., J. W.: On the Mechanical Equilibrium of the Fluid-filled Poro-elastic Body, in: Promechanics - Biot Centennial (1905-2005), AbousleimanY. N., Cheng A. H.d., Ulm F.-J. (eds.),Leiden, A. A. Balkema 2005, 85-90.
  • 55. Mair R. W., Wong G. P., Hoffmann D., Hürlimann M. D., Patz S., Schwartz L. M., Walsworth R. L.: Probing porous media with gas diffusion NMR, Physical Review Letters, 83, 16 (1999) 3324-3327.
  • 56. Mair R. W., Hürlimann M. D., Sen P. N., Schwartz L. M., Patz S., Walsworth R. L.: Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media, Magnetic Resonance Imaging (2000) 1-12.
  • 57. Masutani Y., Aoki S., Abe O., Hayashi N., Otomo K.: MR diffusion tensor imaging: recent advance and new techniques for diffusion tensor visualization, European Journal of Radiology 46 (2003) 53-66.
  • 58. Mavko G., Mukerji T., Dvorkin J.: The Rock Physics Handbook, Cambridge Univ. Press 1998.
  • 59. McNab J. A.: Diffusion pulse sequences, Physics Group Meeting, January 15, 2006, 2-11.
  • 60. Miyanaga M., Mizuhara N., Fujiwara S., Shimazu M. Nakahata H., KawaseT.: Single Crystal Growth of AIN by Sublimation Method, SEI Technical Review 63 (2006) 22-26.
  • 61. Moldrup P., Olesen T., Komatsu T., Schjonning P., Rolston D. E.: Tortuosity, diffusivity and permeability in the soil liquid and gaseous phases, Soil Sci. Soc. Am. J., 65 (2001) 613-623.
  • 62. Moucheronta P., Bertranda F., Koval1 a G., Tocquera L., Rodtsa S., Rouxa J.-N., Corfdira A., Chevoir F.: MRI investigation of granular interface rheology using a new cylinder shear apparatus, Magn. Res. Im. 28, 6 (2010) 910-918.
  • 63. Newman J. N.: Marine Hydrodynamics, Cambridge, Massachusetts, MIT Press 1977.
  • 64. Nield D. A., Bejan A.: Convection in Porous Media (Third Edition), USA, Springer 2006.
  • 65. Pajevic S., Pierpaoli C.: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain, Magn. Reson. Med. 42(3) (1999), 526-540.
  • 66. Reppert Ph. M., Morgan F. D., Lesmes D. P., Jouniaux L.: Frequencydependent streaming potentials, Journal of Colloid and Interface Science, 234 (2001) 194-203.
  • 67. Rusakov D. A., Kullmann D. M.: Geometric and viscous components of the tortuosity of the extracellar space in the brain, Proc. Natl. Acad. Sci. USA, Neurobiology, 95 (1998) 8975-8990.
  • 68. Santamarina J. C.: Soils and Waves, Chichester, John Wiley & Sons, LTD., 2001.
  • 69. Saripalli K. P., Khaleel R., Serne J., Lindberg M., Parker K.: Tortuosity of immiscible fluids in porous media based on phase interfacial areas: a new definition and its application to Handford's unsaturated media, Seattle Annual Meeting, Geological Society of America Abstracts with Programs, 35, 6 (2003) 482.
  • 70. Sen P. N., Schwartz L. M.: Surface relaxation and the long-time diffusion coefficient in porous media: periodic geometries, Physical Review B, 49, 1 (1994) 215-225.
  • 71. Spanos T. J. T: The Thermodynamics of Porous Media, Boca Raton, Chapman&Hall/CRC, 2001.
  • 72. Stoll R. D.: Sediment Acoustics, New York, Springer, 1985.
  • 73. Straley Ch., Rossini D., Vinegar H., Tutunjian P., Morriss Ch.: Core analysis by low field NMR, SCA-9404 (1994) 43-55.
  • 74. Taylor W. D., Hsu E., Rama Krishnan K. R., MacFall J. R.: Diffusion Tensor Imaging: Background, potential, and utility in psychiatric research, Biol Psychiatry, 55 (2004) 201-207.
  • 75. Torrey H. C.: Bloch equations with diffusion terms, Phys. Review 104 (1956) 563-565.
  • 76. Truesdell C.: Rational Thermodynamics (Second Edition), New York, Springer 1984.
  • 77. Wang R., Pavlin T., Rosen M. S., Mair R. W., Cory D. G., Walsworth R. L.: Xenon NMR measurements of permeability and tortuosity in reservoir rocks, Magn. Res. Im. (2004) 1-9.
  • 78. Watanabe Y., Nakashima Y.: Two-dimensional random walk program for the calculation of the tortuosity of porous media, Journal of Groundwater Hydrology, 43 (2001) 13-22.
  • 79. Westphal H., Surholt I., Kiesl Ch., Thern H. F., Kruspe T.: NMR measurements in carbonate rocks: problems and an approach to a solution, Pure Appl. Geophys., 162 (2005) 549-570.
  • 80. White J. E.: Underground Sound. Application of Seismic Waves, Amsterdam, Elsevier, 1983.
  • 81. Wilhelm T., Wilmanski K.: On the Onset of Flow Instabilities in Granular Media due to Porosity Inhomogeneities, Int. J. Multiphase Flows 28 (2002) 1929-1944.
  • 82. Wilmanski K.: A Thermodynamic Model of Compressible Porous Materials with the Balance Equation of Porosity, Transp. Porous Media 32 (1998) 21-47.
  • 83. Wilmanski K.: On a Homogeneous Adsorption in Porous Materials, ZAMM, 81 (2001) 119-124.
  • 84. Wilmanski K.: Thermodynamics of Multicomponent Continua, in: Earthquake Thermodynamics and Phase Transitions in the Earth's Interior, R. Teisseyre, E. Majewski (eds), San Diego, Academiv Press, 2001, 567-656.
  • 85. Wilmanski K.: On Microstructural Tests for Poroelastic Materials and Corresponding Gassman-type Relations, Geotechnique, 54, 9 (2004) 593-603.
  • 86. Wilmanski K.: Tortuosity and objective relative accelerations in the theory of porous materials, Proc. Roy. Soc. A, 461 (2005) 1533-1561.
  • 87. Wilmanski K.: A few remarks on Biot's model and linear acoustics of poroelastic saturated materials, Soil Dynamics & Earthquake Engineering, 26, 6-7 (2006) 509-536.
  • 88. Wilmanski K.: Continuum Thermodynamics. Part I: Foundations, New Jersey, World Scientific 2008.
  • 89. Wilmanski K.: Diffusion and heat conduction in nonlinear thermoporoelastic media, Chapter 9 of Advances in the Mechanics of Inhomogeneous Media, Cz. Wozniak, M. Kuczma, R. Switka, K. Wilmanski (eds.), Zielona Gora, University of Zielona Gora 2010, 123-148.
  • 90. Yaramanci U: New Technologies in Groundwater Exploration. Surface Nuclear Magnetic Resonance, Geologica Acta, 2, 2 (2004) 109-120.
  • 91. Yaramanci U, Müller-Petke M.: Surface nuclear magnetic resonance-A unique tool for hydrogeophysics, The Leading Edge (Journal of the Society of Exploration Geophysicists), October (2009) 1240-1247.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ4-0021-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.