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This paper is concerned with the bending problem of a fibre-composite plate in the elas-
tic range. Within the classical Kirchhoff plate theory, two approaches are utilized. In the
model due to Switka, the fibre-composite plate is treated as a homogeneous medium with
a number of embedded families of fibres, while in the second model the plate is consid-
ered as a system of orthotropic layers. The bending problem is formulated in classical
and variational forms and solved by finite element method. We have developed our own
computer code and numerically compared predictions of the two models and other mod-
els available in the program ABAQUS on test examples. Numerical results illustrating
influence of the placement of fibres on the quantities of interest are also included.
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1. INTRODUCTION

A composite material is formed when two or more materials are combined. The
properties of the composite are different, usually better then its individual com-
ponents. This paper deals with the problem of bending of laminated composite
plates, including fibre-composite plates. The analysed composite plate consists
of the matrix, which is made of a modern plastic material, and a set of regularly
disposed fibres made of glass or titan, for example. The bending problem of
composite plates has been studied in many works, see e.g. [2, 3, 4, 6]. A finite
element method formulation of the model suggested in [4] is given in [5].

The properties of a composite dependent on the properties of the constitu-
ent materials, and their distribution and interaction. In this paper we have
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treated the composite plate as a fibre-composite plate (model of Switka) and as a
system of layers (a layerwise model). We have based our analysis on the basic
assumptions of classical Kirchhoff plate theory.

Our aim in this is twofold; firstly, to develop our own computer program
for anisotropic plates and to test it on typical examples, secondly we want to
analyse the influence of the fibre orientation on the plate deflection and the
plate bending and twisting moments. In the sequel, we shall briefly present two
models for an anisotropic plate, constitutive relations for an orthotropic layer
and next formulate the bending problem in classical and variational forms and
its FEM approximation. We have developed our own computer code and nu-
merically compared predictions of the model by Switka and the layerwise model
and other models available in the program ABAQUS on test examples. Numeri-
cal results illustrating influence of the placement of fibres on the quantities of
interest are also included. The obtained results

2. THIN ANISOTROPIC PLATE

The differential equation for a thin anisotropic plate in bending takes the form

*w 'w *w
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wherein w=w(x,y) is the displacement of the middle plane of the plate

Q2 cR?, p=p(xy) isthe load on the plate, and coefficients Dj; represent the
plate bending and twisting stiffness,

Dy Dy Dy
D=|D;, D,, Dy 2)
D5 Dy Dgg

2.1. The model of Switka
The cross-section of the analysed fibre-composite plate is shown in fig.1 in
which, for clarity, only one rth family of fibres is shown.
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Fig.1. Fibre composite plate with one family of fibres

The differential equation for a fibre-composite plate in bending takes the form
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Having compared coefficients of eqns. (1) and (3) we arrive at the following
relationships (4):
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with notations: E,, is the modulus of elasticity of the matrix, v, - Poisson’s
ratio of the matrix, & - thickness of the plate, E, - the modulus of elasticity of
the rth family of fibres, A, - cross-sectional area of an individual fibre, z, - the
distance of the fibres of the rth family from the middle plane of the plate, b, -
spacing of the rth family of the fibres, s; - cosine of angle between x-axis and
axis of rth family of fibres, s - cosine of angle between y-axis and axis of rth

family of fibres.

2.2. The layerwise model
The stiffness coefficients D;;for the layerwise model are defined by

N
D; = 126,.;“(ng -7} 5)
3 k=1
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The cross-section of the analysed layered plate is shown in fig.2, where only
two layers are marked for clarity. Location of the typical kth layer and its thick-
ness hy are defined by the coordinates z; and z;,;. A typical fibre layer is shown
in fig. 3. All such layers are assumed to be orthotropic in their material coordi-

nate systems x; x; x3. The global coordinate system, in which the corresponding
boundary problem is solved, is denoted by x y z.

Fig. 2. Layered plate

Fig. 3. Typical kth layer of fibre-composite plate, k=1,2...N

The constitutive equations between stress 6"’ and strain £'"/ tensors for the kth
orthotropic layer in the material coordinate system x; x; x; may be written as
o'¥) = CFgl)

(k) (k) (k)
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Here: E, - the modulus of elasticity of rth family of fibres (placed in kth layer),
v, - Poisson’s ratio of rth family of fibres, ¢, - volume fraction of rth family of
fibres, E,, - the modulus of elasticity of matrix, v,, - Poisson’s ratio of matrix,

¢,, - volume fraction of matrix.

The orthotropic constitutive equations become anisotropic in the global coordi-

nate system. The anisotropy is characterised by matrix C*’and we have

a(k)=c(k)’§(k)

(k) ~ ~ ~ k) (k)
(O G, C, Cgy €,
Yy =1C, () Cy €,
o, Cs Cy 66 28xy

k) = T(“C”"(T”")T
where T*/ is the transformation matrix from the material coordinate system to
the global coordinate system

cos’ 0 sin’ @ —2sinBcosl
T =| sin’6 cos’ @ 2sin@cos@

. . 2 .2
sin@cos@ —sinB@cos@ cos” 0—sin“ 0

with 6 = 0, being the angle between x and x, for the kth layer.
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3. VARIATION FORMULATION

Equation (1) should be supplemented with appropriate boundary conditions. For
the solution of (1) in practical problems one has to resort to approximate, nu-
merical methods. We have used the finite element method which allows one to
effectively solve complex boundary value problems (BVPs) of mechanics. To
this aim we first formulate the BVP for (1) in a variational form. Let

UcCH?(£2) be a set of kinematically admissible displacements of the plate,
VcH?(2) aset of testing functions (virtual displacements). By H 2(0Q) we

designate the Hilbert space of functions that are square integrable with up to
their second derivative on £2. Further, let I' denote the boundary of £ and
I'=r,uly I,nIl, =0, I, being the part of the boundary where con-

straints on displacements are imposed and on /', - stress boundary conditions.

The weak (variational) formulation of the BVP for (1) may be obtained from the
principle of virtual work and stated as follows.

Find we U such that

a(wyv)=f) forall veV (6)

The bilinear form a(' , 0) and the linear form f (0) are

ool [y T o DTy O
, o " ax? ox? 2 x? dy? ° 9x? oxdy
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f(v)=fpvdxdy+ J. (M,mﬂ+Mmﬂ+an)ds
J ds

y on
and correspond to the elastic strain energy and the virtual work of external loads,
respectively.

4. FEM APPROXIMATION

In the finite element method the middsurface plane of the plate, (2, is divided
into a number of finite elements L2° < 2, and within each element e the dis-
placement field w(x,y) is approximated by w’(x,y). Then, the displacement w can
be expressed as
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wix, y) = > w(x,y)=D N°(x,y)q° =Ngq (7)

where N =N°(x,y) is the matrix of shape functions and " is the vector of the

nodal parameters for element e, whereas N and q are their counterparts for the
whole plate. Using (7) we can define stresses and strains in the plate as a func-
tion of q :

— field of strains

w

e=|g, |=—zl w, |=—zk=-zBq (8)
Y ZW’xy

where K stand for the matrix of curvatures

K, 0° /9x*
x=| &, [=Bq, B=0N, d=| 9°/9)° ©9)
2K, 20°/9xdy

— field of stresses in kth layer

(k)
O

G =0y, :é(k)s(k):_zé(k)Bq, Ze[zklzkH] (10)

Xy

— field of moments

e

=-DBgq (11)

yy

=
I
T XK

The vector of nodal parameters q can be eventually determined from the system
of the equilibrium equations

Kq=f (12)
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in which K is the global stiffness matrix and f is the global vector of nodal
forces, both obtained by aggregation of all elemental contributions. In our own
computer program we have used a 4-node quadrilateral finite element (P1Q4)
with 12 degree of freedom (DOF). The explicit formulae for elements Kj; of the
stiffness matrix for this quadrilateral finite element are listed in [1]. For the sake
of comparison, we have calculated test examples both with our program and the
ABAQUS software.

5. NUMERICAL EXAMPLES

In this section we have presented and compared some of the results of numerical
tests we have obtained for fibre-reinforced plates when using different models
and various types of finite elements. The influence of finite element meshes is
also considered.

Exmaple 1.

At first we have analyzed a square simply supported orthotropic fibre-composite
plate and compared the FEM results with the analytical Navier solution. The
plate is reinforced by four families of fibres (see fig. 4). The thickness of the
plate is 0.01 m and material coefficients are E,=3,15 GPa, v,=0,38, E,=85,5
GPa, v,=0,20.The plate is loaded by a uniformly distributed pressure g=1 kPa.
We have solved the plate using the model of Switka and the layerwise model, the
corresponding stiffnesses D;; are gathered in table 1. The used finite element was
20 x 20. The distribution of plate’s deflection along half-span cross-section A-A
for various cases is shown in fig.5. The solutions are similar with maximum
differences of about 5%.

Top reinforcement by

Fo-msTmTmmmmms ! / two families of fibres

two families of fibres

1.00
>
|
|
|
|

]
| Bottom reiforcement by
1
!

Fig. 4. Orthotropic fibre-composite plate
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§ -0,006 Dj; by (5)
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= -0,008 ~ i ) solution
o =
-0,01
-0,012
coordinate [m]
Fig. 5. Deflection along the cross-section A-A in an orthotropic plate (cf. fig.4)
D“ D12 D22 D66
Model of Switka 5.473E-4 1.166E-4 5.347E-4 9.511E-5
Layerwise model 5.541E-4 1.209E-4 5.426E-4 1.07E-4
Tab.1. Example 1: stiffness coefficients D; by two models, with Ds=D,c=0
Example 2.

Next, we have tested the fibre-composite plate that was composed of polyester
matrix and eight families of glass S fibres. Figure 6 shows cross-section of this
plate. In our tests some selected families of fibres are rotated from the global
coordinate system by angle @,. The angle 8, in the layerwise model is between

global and material coordinate systems. Thickness of the plate is #=0.02 m and
material coefficients are E,=3,15 GPa, v,=0,38, E,=85,5 GPa, v,=0,20. We
solved two cases, C1 and C2, with different orientations of the fibre families (in
all the cases the reinforcement is symmetric to the middsurface plane of the
plate, M denotes a layer of matrix without fibres):

C1: [M/0/90/0+6/90+6/0/90/0+6/90+68/M]s,

C2: [M/0/90/22,5/112,5/45/135/67,5/157,5/M]s.
We have analyzed rectangular plate (1,00 m x 1,50 m) loaded by the uniformly
distributed preassure (p=1 kPa) and concentrated force (P=1 kN) applied at the
central point of the plate (point C). The plate is fixed on two edges and simply
supported on one edge, see fig. 7. We have compared displacements in charac-
teristic points B and C (fig.7) of the plate determined by own program and
ABAQUS with different elements and meshes (figs. 8-11) using the layered
model.
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Fig. 6. Cross-section of the analysed plate and “cell” in layer with fibres
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Fig.7. Examples 2 and 3: rectangular plate 1.00 x 1.50
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Fig.8. Case C1 (6=0°): deflection at point C for different elements and meshes
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Fig.9. Case C1 (0=0°): deflection at point B for different elements and meshes
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Fig.10. Case C2: deflection at point C for different elements and meshes
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Fig.11. Case C2: deflection at point B for different elements and meshes

Example 3.

We have analyzed the same plate as in example 2, case 1: [M/0/90/0+6/ 90+6/
0/90/0+6/90+6/M]s and solved it for various values of angle 0 in the indicated
layers. Figures 12 to 14 show the influence of 0 on the coefficients of stiffness
Dj; in both the models. Next, we analysed this influence on displacements (figs.
15-16) and stresses (figs. 17-20). It can be seen that although the differences in
stiffnesses are about 13% in the case of D;; and about 40% in D, this is not to
such extent reflected in displacements whose changes are less then 5%. Finally,
figs. 17 and 18 illustrate distributions of shear stress o, for two values of ¢ by
means of level sets.
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Fig.12. Influence of fibre orientation on D;; by different models
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Fig.13. Influence of fibre orientation on D;, by different models
Dl3
5,00E-04
4,00E-04 A— D)3 by layered
o = model
3,00E-04 —B—D3 by Switka
2,00E-04 model
1,00E-04
0,00E+00|2'{ ;
-1,00E-04 §  angled
200E04{—— N
-3,00E-04 .
-4,00E-04 W
-5,00E-04

Fig.14. Influence of fibre orientation on D;; by different models
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Fig.15. Case C1: influence of fibre orientation on deflection at point C by different
models and programs
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Fig.16. Case C1: influence of fibre orientation on deflection at point B by different
models and programs
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Fig.17. Case C1 (6=0°): Stress a,, on the bottom surface of plate
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Fig.18. Case C1 (8=45"): stress ., on the bottom surface of plate
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6. CONCLUSION

In the paper we have presented the results of numerical simulation of the
bending problem for a thin fibre-reinforced plate in the elastic range, making use
of a number of models. The corresponding differential equation of the
anisotropic plate is solved by the finite element method. In calculations we have
used our own computer program and the program ABAQUS. The obtained
results show some noticable differences in values of stiffness coefficients by the
approach of Switka and the layerwise approach, however, the resulting
differences in displacements are of minor importance. If fact, the predictions of
Swika’s model are close to the results by ABAQUS with the rebar model. The
applied 4-node quadrilateral plate element has proved to be quite effective,
except for regions with point loads where the solution convergences in oppposite
direction to that of ABAQUS. Finally, it may be concluded that the differences
in the final quantities of interest due to the used different mathematical models
of fiber-reinforcement are of minor importance from the enginnering point of
view.
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ANALIZA SPREZYSTYCH PLYT ZBROJONYCH WEOKNAMI
Streszczenie

W niniejszej pracy rozwaza si¢ zagadnienie zginania wiéknokompozytowych ptyt
w zakresie sprezystym. Dla poréwnania, wspétczynniki sztywnosci plyty na zginanie i
skrecanie wyznacza si¢ wedlug modelu Switki i modelu warstwowego. Do wyznaczenia
rozwiazania rézniczkowego réwnania anizotropowej ptyty zastosowano metodg element-
téw skonczonych. Rozwigzanie numeryczne wyznaczono za pomoca opracowanego
wlasnego programu komputerowego i wykorzystujac program ABAQUS celem doko-
nania poréwnania. Praca zawiera wyniki wielu analiz numerycznych, wskazujace na
wplyw kierunku utoZenia widkien oraz zastosowanych elementéw skoficzonych i ggstosci
siatki elementéw na wielkosci fizyczne.



