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The paper concerns the free vibrations of a plate in contact with a fluid in a container. 

The plate is supported at container walls. The analysed problem is a coupled problem of 

the structure-liquid type. It is assumed that the fluid is inviscid and incompressible. The 

side walls of the container are treated as rigid. Action of the fluid on the vibrating plate 

was described by the boundary integral equation. To solve it the boundary element 

method was used. Elements of constant type were applied. The plate mass was modelled 

by the masses concentrated in nodes. The plate flexibility matrix was determined using 

the FEM program. Numerical examples of the free vibrations of rectangular plates are 

solved. 
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1. INTRODUCTION 
 

Free vibrations of a plate and a fluid in a container are analysed in this paper. 

The plate supported at container walls is in contact with the fluid free surface. A 

vibrating plate induces vibrations of a surrounding fluid which in turn generates 

additional inertia forces due to the fluid mass. The analysed problem is a cou-

pled problem of the fluid-structure type. Such problems arise for example in the 

dynamic analysis of dams and liquid tanks. 

The aim of this paper is to present a method for the solution of the free 

vibration problem for a plate interacting with fluid. The method describing the 

hydrodynamic pressure is based on the boundary integral equation, which is 

solved by the boundary element method. The most important advantage of the 
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boundary integral equation formulations is the reduction of the computational 

dimension of the problem by one; e.g. three-dimensional problems are solved on 

two-dimensional surfaces enclosing the domain. 

The constant type boundary elements are applied and the first order ap-

proximation is used for the calculations of integrals in this paper. The BEM was 

also used to find the fluid mass matrix in [1, 2]. In [3] vibrations of a circular 

plate on a liquid surface in a container were analysed using the Rayleigh-Ritz 

method. 

 

 

2. PROBLEM FORMULATION 

 

Let us consider a container of any shape with a free surface S1 and bottom sur-

face S2 (Fig.1). A plate is in contact with the free surface of a fluid and is sup-

ported at container walls. It is assumed that the fluid is incompressible and in-

viscid. The perturbation fluid velocity potential ( )t,z,y,xΦ  satisfies Laplace’s 

equation: 

( ) 02 =∇ t,z,y,xΦ     (1) 

The solution of equation (1) may be expressed as a single-layer and dou-

ble-layer potential for the three-dimensional problem [4] 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )QdS
Qn

Q,P
t,QQdSQ,P

Qn

t,Q
t,PPC

SS
∂

∂
−

∂

∂
=

∗
∗ ∫∫

Φ
ΦΦ

Φ
Φ  (2) 

where:   C(P) is a coefficient, which for a smooth surface is equal to 0.5, t is 

time, ( )
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Φ =  is the fundamental solution; P, Q are two arbitrary 

points on the surface S (S=S1+S2). 

 

 
Fig.1. A container of any shape. 
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The bottom surface of the container is treated as rigid and the small vibra-

tions of the plate and the fluid are considered. Boundary conditions on the sur-

face S are of the Neumann type: 

� bottom condition:  0=
∂

∂

n

Φ
 on S2                                               (3) 

� plate-surface condition: 
t

w

z ∂

∂
=

∂

∂ 1Φ
 on S1                                  (4) 

where w1 is the plate displacement, ti
ew~w

ω
11 = , ω is the circular frequency. 

Boundary condition on the surface S1 is a coupling condition between the struc-

ture and the fluid. The fluid in the container is in the gravity field, so on the wet 

surface of the plate a hydrostatic lift acts: 

1wgps ρ−=   on S1     (5) 

where: ρ  is the fluid density, g is the gravity acceleration. 

This relation is known as the free surface condition. The hydrodynamic pressure 

acting on the surface S is given by: 

t
ph

∂

∂
−=

Φ
ρ       (6) 

where ti
hh ep~p

ω=  is the hydrodynamic pressure. 

Differentiating (2) with respect to time and using (4) and (6) we can rewrite (2) 

in the form: 
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3. SOLUTION OF THE PROBLEM 
 

The hydrodynamic pressure acting on the surface S is described by the integral 

equation (7). The solution of this equation is obtained by means of the boundary 

element method. The surface of the plate and the bottom of the tank are discre-

tized using triangular or quadrilateral elements of constant type. The collocation 

points are the centroids of the elements. The boundary element discretization of 

equation (7) results in the following matrix equation: 

hh
~~~ pBwApC −= ρω 2     (8) 
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1
 and w~  are the vectors of amplitudes of 

hydrodynamic pressure and displacements, respectively, C is the diagonal ma-

trix of coefficients C, A and B are the (N×N)-quadratic matrices (N is the num-

ber of all boundary elements), vectors h
~

1p  and 1w~  consist of M elements (M is 

the number of the plate surface boundary elements). 

The elements Amn and Bmn of the matrices A and B are given by: 
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In the paper, the first-order approximation is used to calculate the integrals (9) 

and (10) [5,6]. These integrals are evaluated as: 
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where: αmn is defined as the angle between the normal vector n at the nodal 

point n and the vector r between nodal points m and n, Sn is the area of n-th 

element, rmn is the distance between the points m and n. 

From the equation (8) we can obtain: 
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,   B1=C+B, and +

1B  is the pseudo-inverse of B1. 

Matrix B1 is singular, so we calculate the Moore-Penrose pseudo-inverse matrix 

using the SVD procedure [7]. It can be shown [4] that the diagonal elements B1ii 

can be evaluated as: 
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The amplitudes of the hydrodynamic forces acting at the plate collocation points 

can be determined as: 

1

2
wMP ~~

f
ω=      (16) 

where: 11HSM ρ=f  is the fluid mass matrix, H11 is the (M×M)-submatrix of 

the matrix H, S = diag(S1, …, SM), Si is the area of the i-th element. 

The action of the liquid on the vibrating plate consists of: 

� a hydrostatic lift, 

� an inertia force. 

Hence, the equation of free vibrations of the plate takes the form: 

hpwwgwD 1111
4 =++∇ &&µρ     (17) 

where: 
( )2

3

112 ν−
=

Eh
D  - the plate stiffness, E – the Young’s modulus, ν - the 

Poisson’s ratio, h – the plate thickness, µ - the plate unit mass, p1h – the hydro-

dynamic pressure. 

The hydrostatic lift is an analogue of a reaction force of an elastic founda-

tion of the Winkler type. The flexibility matrix of the plate resting on the elastic 

foundation was calculated using the finite element method computer program 

PL-WIN. Triangular and quadrilateral finite elements were applied. The compo-

nents of the plate flexibility matrix are the displacements of the collocation 

points evoked by the unit forces. The equation of motion of the plate in the ma-

trix form reads: 

PDwDMwI
~~~ =− 1

2

1 ω     (18) 

where D – the plate flexibility matrix, M – the plate mass matrix, P
~

 - the vector 

of the amplitudes of the hydrodynamic forces, I – the unit matrix. 

The plate mass matrix was taken as diagonal with the masses correspond-

ing to the collocation points. With (16) taken into account in (18) one gets: 

( ) 0wIE =− 1
~λ      (19) 

where: ( )fMMDE += , 
2

1

ω
λ = . 

The above equation represents the standard eigenproblem. The eigenvectors of 

the matrix E express the vibration modes of the plate and the eigenvalues λ al-

low to calculate the natural frequencies ω. 
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We shall now consider the calculation of pseudoinverse of matrix B1. 

A solution for the internal Neumann problem exists when: 

0=
∂

∂
∫ dS

n
S

Φ
     (20) 

It is equivalent to the incompressibility condition of fluid. Matrix B1 is singular 

and the inverse matrix 1
1
−

B  does not exist. Pseudoinverse matrix +
1B  is calcu-

lated from the singular value decomposition of the matrix B1 (SVD procedure 

[7]) 

UΣB =1
T
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where: U, V - are orthogonal (N×N)-matrices, ( )011 ,...,,diag N −= σσΣ , σi is the 

i-th singular value. Hence: 

T
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where ( )011
,...,,diag N
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σ
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=+ ,  i=1, … , N-1. 

In the singular decomposition (21) and (22) we substitute εσεσ 1== +
NN , , 

instead of 0== +
NN σσ , where ε is a very small value when compared with 

other values σi. It is suggested to determine ε from the following formula: 

∑
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,  where 1>>L .   (23) 

During numerical tests it was observed that when L increased, one of cir-

cular frequencies obtained from the equation (19) decreased to zero. This meant 

the lack of vibrations (ω1≈0) for the eigenvector corresponding to the condition 

(20). When L = 100 to 1000, the smallest circular frequency near zero was about 

two to three orders of magnitude smaller than next one and it was found to be 

satisfactory. 

In the case of a tank with a flat bottom which is parallel to the free surface 

of liquid one can use the fundamental solution in the form: 

( )
( ) ( )'
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ππ
Φ
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1

4

1
+=∗    (24) 

where the point Q’ is the mirror-reflection of the point Q with respect to the 

bottom plane. In this case the flat bottom does not undergo boundary element 

discretization and the number of unknowns in the problem is reduced. 
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4. NUMERICAL EXAMPLE 
 

Calculations of  the  free  vibrations of a plate  resting  on a liquid  surface  

and supported at container walls were carried out. The container has the follow-

ing dimensions: length 5.0m, width 4.0m, height 3.0m. The steel plate has fol-

lowing parameters: h =1.0cm, E =205GPa, ν =0.3, µ =78.5kg/m2. The liquid 

density ρ =1000kg/m3. 

The two cases of plate boundary conditions are analysed: simply sup-

ported edges and clamped edges. Rectangular elements were used to discretize 

the plate and side-walls of the tank. 

The obtained values of the natural frequencies of the simply supported 

plate are presented in the Table 1 and those of the clamped plate – in the Ta-

ble 2. The last columns of both Tables show the results for the case without 

liquid.  

Figures 2 and 3 present six first modes for both analysed plates. 
 

Table 1. Natural frequencies of the simply supported plate 

Natural frequency [rad/s] 

with liquid without liquid 

Number of degrees of freedom 

Number 

of mode 

shape 
25 49 81 81 

1 8.672 8.817 8.859 15.664 

2 12.370 12.527 12.564 34.041 

3 19.367 19.845 19.954 44.403 

4 19.566 20.328 20.498 62.842 

5 30.715 31.878 32.083 64.776 

6 31.293 33.135 33.530 92.417 

7 34.723 38.685 39.424 93.547 

8 38.990 41.477 41.948 107.903 

 

Table 2. Natural frequencies of the clamped plate 

Natural frequency [rad/s] 

with liquid without liquid 

Number of degrees of freedom 

Number 

of mode 

shape 
25 49 81 81 

1 14.669 14.498 14.390 29.030 

2 20.771 20.530 20.367 51.163 

3 28.660 28.730 28.544 66.752 

4 30.638 30.442 30.193 87.307 

5 44.496 45.104 44.841 87.316 

6 46.199 47.112 46.902 121.793 

7 50.675 52.137 52.144 124.614 

8 57.425 58.097 57.882 136.738 
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The results show a good convergence when the number of degrees of freedom 

increases. It is clear that the presence of liquid re-

duces significantly the natural frequencies. 

1. 2. 3.

4. 5. 6.

 
 

Fig. 2. The first six vibration modes of the simply supported plate 

 

 

1. 2. 3.

4.
5. 6.

Fig. 3. The first six vibration modes of the clamped plate 

 

 

5. CONCLUSIONS 

 

A method of calculation of free vibrations of a plate in contact with a fluid in a 

container was presented in the paper. The hydrodynamic pressure of the liquid 

was described by the boundary integral equation and the boundary element 

method was applied to solve it. The constant type elements and the first-order 

approximation were used. The FEM computer program was used to determine 

the plate flexibility matrix. The obtained results show a good convergence. The 

influence of liquid on the plate free vibrations is significant. 
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ANALIZA DRGAŃ WŁASNYCH PŁYTY I CIECZY W ZBIORNIKU 

 

Streszczenie  

 

W pracy analizuje się drgania płyty w kontakcie z cieczą znajdującą się w zbior-

niku. Płyta zamocowana jest w ścianach bocznych zbiornika. Rozważany problem zali-

cza się do zagadnień drgań sprzężonych typu konstrukcja-ciecz. Przyjęto, że ciecz jest 

nieściśliwa, a ściany boczne zbiornika są sztywne. Oddziaływanie cieczy na drgającą 
płytę opisano brzegowym równaniem całkowym. Do jego rozwiązania wykorzystano 

metodę elementów brzegowych. Zastosowano elementy brzegowe typu „constans”. Przy-

jęto model płyty z masami skupionymi w węzłach. Do wyznaczenia macierzy podatności 

płyty zastosowano program MES. Zamieszczono przykłady liczbowe drgań własnych 

prostokątnej płyty w kontakcie z cieczą w zbiorniku. Wpływ cieczy na drgania własne 

płyty jest duży. 

 


