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The report presents an analytical model suitable to carry out a shakedown and limit 
analysis of steel thin-walled beam cross-sections under low-cyclic loadings. The loads 
and actions are quasi-static, any dynamic effects and fatigue failure are not considered. 
Initial stresses (due to prestressing) as well as residual stresses are allowed. The vector of 
variable repeated forces contains the axial force, the bending moments about two princi-
pal axes of cross-section and warping moment. Shear forces, moments of pure torsion 
and bending torsion are also taken into account but their influences are assumed to be 
minor. Prestressing forces and thermal actions are considered herein as one of the load 
types with zero vector of resultant internal forces. Cross-sections of beams may have any 
geometrical form, but analysis are performed for the I-type beam under bending about 
two principal axes, without warping moment. The numerical results for cyclic load are 
compared with the analogous data for one-path load on the cross-sections. 
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1. INTRODUCTION 

 
The numerous literature ([4-6]) is devoted to analysis and design of metal or 
steel structures from elastic-plastic thin-walled elements. However basically was 
studied only behavior of elements and cross-sections subjected to monotonic 
one-path load or to the load with certain known history. 

The behavior of steel thin-walled cross-sections with restricted plastic de-
formations under repeated loads of certain history was investigated in study [6]. 
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However the load-carrying structures are exposed to the actions (static, thermal, 
kinematic, etc.), which may vary in a random manner. As a result, there are re-
peated alternating cross-section forces changed arbitrarily within the specified 
area ([1, 7-9]). At present, only separate design combinations of loads and influ-
ences are usually taken into account in analysis and design procedures. In fact, 
the strength conditions of elements essentially depend on the interaction of vari-
able repeated loads. The strength conditions in terms of generalized forces 
(variables) for simple sections from homogeneous ideal plastic material for dif-
ferent types of load cycles have been obtained in the studies [1, 8, 9]. In the 
work [2] an analytical model to the shakedown analysis of steel thin-walled I-
cross-sections for the cycles “from zero” and for the fixed ratio of two-direction 
bending moments was suggested. 

In this paper, an analytical model [2] is evolved to analyze the beam ele-
ment cross-sections under more general case of the low-cyclic loadings. The 
loads and actions are quasi-static, no any dynamic effects and fatigue failure are 
considered. The constitutive model of steel is bilinear elastic-perfectly plastic 
without strain hardening. The cross-section may have any geometrical form, the 
prestressing is allowed. The vector of variable repeated forces contains axial 
force, two bending moments about principal axes of cross-section, and warping 
moment. The torsion and the shear forces are also taken into account but their 
influences are assumed to be minor. Prestressing forces and thermal actions are 
considered herein as one of the load types with zero vector of resultant internal 
forces. The numerical analysis are performed for the I-type beam under bending 
about two principal axes (unsymmetrical bending), without warping moment. 

 
 

2. GENERAL RELATIONS OF SHAKEDOWN PROBLEM 

 

Let the cross-section of metal (steel) element be subjected to the vector of vari-
able repeated forces S = (N, Mx, My, Bω, T0, Mω, Vx, Vy) ∈ R8, which are changed 
arbitrarily within the given domain ΩS. This domain can be simulated by the 
rectangular parallelepiped 

 

 ΩS = (S ∈ R8 : µS
-
 ≤≤≤≤ S ≤≤≤≤ µS

+), (1) 

 

where N – normal force (tension or compression); Mx, My – bending moments, 
Bω – warping moment, T0, Mω – moments of pure torsion and bending torsion 
accordingly, Vx, Vy – shear forces; S- = (N-, Mx

-
, …, Vy

-), S+ = (N+, Mx
+
, …, Vy

+) 
are the vectors of design combinations of cross-section forces due to external 
loads (static, thermal and kinematic [3]); µ - the parameter of load. Note that the 
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thermal and prestressing action components distributed on the section area may 
be added to the vector S. 

The domain ΩS contains the coordinate origin or “zero load” S=0 corre-
sponding to initial non-stress state of section with non-prestressing or initial 
stress state of section with prestressing. The latter state is considered like 
a thermal action. 

In surfents dA of steel area A which have coordinates x = (x, y) the 
stresses σσσσ = (σz, τzx, τzy), σσσσ ∈ R3, appear; the stresses σx, σy, τxy are neglected; 
normal stresses σz in steel of area As are only considered. Subscript “z” for 
stresses σz is omitted. 

To check the plasticity of steel in compression and in tension a Huber-von 
Mises criterion in terms of principal stresses for three-dimensional stress state is 
adopted. It can be written as 

 

 σ2
1 + σ2

2 + σ2
3 – (σ1 σ2 + σ2σ3+σ3σ1) - fy

2 ≤ 0,         x ∈ A, (2) 

 

where fy is the steel stress at yield. 
For steel cross-section in a state of plane stress, inequality (2) is rewritten 

as 
 σ2 + 3((τzx)

2+ (τzy)
2) - fy

2 ≤ 0,      x ∈ A. (3) 

 

The quadratic inequality (3) may be substituted for linear inequalities for 
steel of area Ac in compression and for steel of area At in tension respectively: 

 

 -σ + *
yf  ≤ 0,       x ∈ Ac , (4) 

 σ - *
yf  ≤ 0,        x ∈ At , (5) 

 

where *
yf  is the radical of function located in the left side of (3), which depend 

on shear stresses τ = (τzx, τzy). It is given by 

 

 
)(3 222*

zyzxyy ff ττ +−=
; (6) 

its absolute value is the equivalent strength of steel. 
Furthermore, residual shear stresses are neglected, i.e. 
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 τ
r = 0,    or    τr

zx = τr
zy = 0, (7) 

 
then 

τ = τ
e
(Sτ)      (8) 

 

where τe
(Sτ) – is known vector-function, Sτ = (T0, Mω, Vx, Vy) ∈ R4. 

The total stresses in the cross-section of area A are presented as a sum of 
elastic σe and residual σr components: 

 

 σ = σe(Sσ) + σr,        x ∈ A, (9) 

 

where Sσ = (N, Mx, My, Bω) ∈ R4, so S = (Sσ, Sτ) ∈ R8. 
The dependence σe(Sσ) of elastic stresses upon external forces at one-pass 

loading is defined by 

 .ωσ
ω

ω

I

B
x

I

M
y

I

M

A

N

y

y

x

xe +++=  (10) 

 

With referring to Eq. (9), conditions (4) and (5) take the forms: 

 

 ,,0* cAxf y

re ∈≤+−− σσ  (11) 

 t

y

re
Axf ∈≤−+ ,0*σσ . (12) 

 

As function σe(Sσ) in Eq. (10) is linear, the extremal stresses σe-, σe+ are 
induced by the dangerous load combinations: 

 

 { }.0 );,(minmine +−− =
σσ

SS
eσσ  (13) 

 { }.0 );,(maxmaxe +−+ =
σσ

SS
eσσ  (14) 

 

Referring to Eqs. (13), (14), the plasticity conditions (4) and (5) may be 
written in the following forms: 

 

 ,,0* c

y

re
Axf ∈≤+−− − σσ  (15) 

 t

y

re
Axf ∈≤−++ ,0*σσ . (16) 
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Besides, the following equilibrium equations must be satisfied for the re-
sidual stresses σr  in the whole cross-section: 

 

 ∫ =
A

r
dA 0σ , (17) 

 ∫ =
A

r
xdA 0σ , (18) 

 ∫ =
A

r
ydA 0σ . (19) 

 

If inequality (15) or (16) is actual also in the whole cross-section, the 
shakedown regime is named “incremental collapse”. 

It is obvious that both inequalities (15), (16) may be actual only in a few 
(one or several) points x of cross-section area. Then we have a shakedown re-
gime of alternating steel yielding. 

The strength of steel element cross-section is ensured if there are fields of 
residual stresses σr(x), x ∈ A provided that inequalities (15), (16) and equalities 
(17)-(19) hold (shakedown conditions). 

 
 

3. LIMIT ANALYSIS PROBLEMS 
 

The primal limit analysis problem for the ultimate capacity of the element cross-
section can be formulated in case when vector S-, S+ of the section force com-
binations depends only on the one parameter of load µ. 

Thus, the following infinite-dimensional nonlinear programming problem 
A is derived: the parameter of load should be maximized, 

 

 µ → max, (20) 

 

while constraints (15)–(19) depended on µ are satisfied. 
The variables of this problem are the field of optimal control variables 

σr(x), x ∈ A, and parameter µ. 
Similarly, the inverse (design optimization) problem B can be formulated 

if the vectors S-, S+ are known, and steel yield stress fy (unknown) depends on 
parameter λ; fy := λfy, where fy is some positive constant; parameter λ should be 
minimized, 

 
 λ → min, (21) 



24 Piotr ALIAWDIN, Gerard BRYŚ 
 

subject to (15)–(19) depended on λ. 
This problem has the same variables as previous problem if substitute µ 

for λ. 
In order to obtain the numerical solutions of these problems they have to 

be reduced to the finite-dimensional problems by division the cross-section area 
A into the elementary areas ∆Ai, i∈I, where I is the set of indicies of elementary 
areas. Then the vector of variables (residual stresses σr) will have dimensions of 
value |I|, and the problems formulated can be solved by the conventional meth-
ods of optimization. 

It is possible to use another simple and accurate computer-aided numeri-
cal procedures based on the approach [2]. 

The technique to solving the primal problem A, for the regime of progres-
sive plastic failure and for any geometrical form of cross-section, may be real-
ized by applying the following inverse method: 

1. Assume a value to parameter of load µ. It may correspond to the cross-
section ultimate capacity derived without considering cyclic load interactions. 

2. Determine the extremal elastic stress distributions on the areas of 
cross-section. 

3. Take location of neutral axis. 

4. From (15), (16) as from equalities obtain the residual stresses σr. 

5. Substitute σr into Eqs. (17)-(19) and obtain values of parameter µ. 

To solve the inverse problem B the scheme of procedure may be sketched 
as follows: 

1. Determine the extremal elastic stress distributions on the cross-section 
areas. 

2. Assume a value for parameter λ (for example, adopt from results of 
analyses carried out without considering cyclic load interactions). 

3-5. See the same Steps of previous scheme. 
Then we have to calculate the safe domain of strength for the alternating 

yielding from the actual inequalities (15) and (16). The real safe domain of 
strength is the intersection of first and second domains, corresponding to these 
two regimes of shakedown. 
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4. I-CROSS-SECTIONS UNDER TWO-DIRECTIONAL 

BENDING 

 
Here we analyze the thin-walled I-section cyclically loaded only by the bending 
moments Mx, My; S = (Mx, My) ∈ R2. At first, consider “from zero”-type load 
cycles, S- = 0. In this case of load domain ΩS (1) a regime of alternating plastic-
ity can not exist, so only incremental collapse of cross-section will be realized. 

The diagrams of extremum elastic σe-, σe+ and residual σr (σi
r:= ri, i ∈ 

1:5) stresses in a limit state of shakedown are shown in Fig. 1. The location of 
neutral axis is determinated by points with coordinates x = 0 and x = (-αb, h/2). 

In this case owing to symmetry the first equilibrium equation (17) is satis-
fied identically, and the other equations (18), (19) may be written in the follow-
ing matrix form:  

 
 1bA

rr
≤σ , (22) 

 
where  
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and 
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Fig. 1. Thin-walled I-section under “from zero” cyclic load; diagrams of extremum 

elastic σe-, σe+ and residual ri (i ∈ 1:5) stresses 

 
If the value αb is fixed, the unknowns Mx, My for the limit state of shake-

down may be found from the Eq. (22) taking into account Egs. (23) - (25), 
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            (26) 

Note, that this solution is true only for the meaning of the parameter tw/b 
> α < 0,5. For the domain 0 < α < tw/b it is necessary to accept another (thick-
walled) model of cross-section. For such case we propose a simple Eq. to ap-
proximate the relations between nondimensional bending moments mx and my in 
the following form: 

 

 21 xy amm −= , (27) 
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where 
plx

x
x

M

M
m

,

= , 
ply

y

y
M

M
m

,

= ,   2/)1( xwyw mma −= , mxw, myw are the mean-

ings of moments mx and my respectively for the parameter α = tw/b. 
Then let us consider sign-varying cyclic load of the cross-section, S- < 0. 

The calculations in this case will be analogous, but the strength for the alternat-
ing plasticity has to be analyzed (see parts 3, 5). 

 
 

5. NUMERICAL RESULTS 

 
On the basis of described analytical models the computer program has been 
developed, and some numerical results have been obtained. Thus, it was found 
that traditional analysis may overestimate the ultimate carrying capacity of 
cross-section if the influences of repeated forces interaction are neglected. 
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Fig. 2. Domain of strength for thin-walled section I 500 under one-pass (my) and 

under “from zero” cyclic (mysp) load; 0≤ mx ≤ mx
+; 0≤ my ≤ my

+ 
 

5.1. There are some numerical results of limit and shakedown analyses of 
steel beam I 120 with thin-walled cross-section under “from zero”-type cycles of 
bending moments Mx, My. Domains of strength for this section under one-pass 
(my) and cyclic (mysp) loading are shown in Fig. 2, where mx

+ and my
+ are rela-
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tive (dimensionless) sizes. The difference between these solutions is reached to 
28 %. 

 
5.2. The results of numerical analysis for the I-type beam under sign-

varying cyclic bending moment; -0,1≤ mx ≤ mx
+; -0,2≤ my ≤ my

+ are presented in 
Fig. 3. Here the curves 1 and 2 correspond to the incremental collapse and to the 
alternating plasticity of cross-section respectively. 
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Fig. 3. Domain of strength for thin-walled section I 500 under sign-varying  

cyclic load; -0,1≤ mx ≤ mx
+; -0,2≤ my ≤ my

+ 

 
The analytical equation for the regime 2 of alternating plasticity is the fol-

lowing: 

 

,2/)(/)( ,, =−+− −+−+

yplyyyxplxxx WWmmWWmm           (28) 
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where plyplx WW ,, ,  are the plastic moments of resistance for the corresponding 

axes x, y. 
 
 
6. CONCLUSIONS 

 
In this study, an analytical model is formulated and simplified approach meth-
ods are proposed to carry out a limit analysis of steel elements and shakedown 
analysis of beams subjected to the low-cyclic loads. 

It is shown that analysis may overestimate the shakedown of the structure 
elements if the influences of interactions of variable repeated forces are ne-
glected. The possible significant influence of these effects on the cross-section 
capacity of steel beams is demonstrated by the numerical results for the I-beams 
under two-direction bending. 
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UPROSZCZONA METODA ROZWIĄZANIA PROBLEMU PRZYSTOSOWANIA 
PRZEKROJÓW DWUTEOWYCH NA ZGINANIE DWUKIERUNKOWE 

 
S t r e s z c z e n i e  

 
W referacie zaprezentowano dogodny, odwrotny sposób rozwiązania problemu 

przystosowania i nośności granicznej stalowych, cienkościennych przekrojów poddanych 
obciążeniu niskocyklicznemu. W rozważaniach przyjęto kwazistatyczny przyrost obcią-
żeń, oraz pominięto efekty dynamiczne i zmęczeniowe. Naprężenia początkowe (odpo-
wiadające np. sprężeniu wstępnemu) dopuszczono na równi z naprężeniami rezydualny-
mi. Wektor sił zmiennych w ogólności zawiera obciążenia osiowe, momenty zginające w 
obydwu głównych osiach i bimoment. Przyjęto, że wpływ sil ścinających i momentu 
czystego skręcania jest nieznaczny. Siły sprężające i oddziaływania termiczne zawarto 
jako zerowy wektor sił wewnętrznych. Przekrój poprzeczny belki może mieć różny 
kształt, jednak w konkretnym przykładzie obliczeniowym rozważono bisymetryczny 
przekrój dwuteowy przy zginaniu dwukierunkowym. Wyniki obliczeń numerycznych 
przystosowania porównano z nośnością graniczną przekroju przy obciążeniu jednokrot-
nym. 
 
 
 
 
 


