PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processing and structure of laminated iron-intermetallics composites

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using Fe sheets and Cu and Ti foils, Fe-intermetallic phases laminated composites have been fabricated through reactive sintering at 900°C for 15, 30 and 120 minutes in vacuum. After 15 minutes at 900°C all titanium layers were fully consumed but there were thin (about 40 žm) unreacted layers of copper. What was important, the copper layers could still block the diffusion of Ti to Fe. With increasing annealing time up to 30 minutes at 900°C the layers of Cu disappeared completely forming intermetallic phases. Thus, the final microstructure consisted of alternating layers of intermetallic phases and unreacted Fe metal. The microstructure was revealed in optical and scanning electron microscopy (SEM). The study exhibited the presence of different reaction products in the diffusion zone and their chemical compositions were determined by energy dispersive spectroscopy (EDS) [...]
Rocznik
Strony
71--76
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Machine Building, Department of Metals Science and Materials Technologies, 25-314 Kielce, Poland, mkon@sabat.tu.kielce.pl
Bibliografia
  • [1] O. Yazar, T. Ediz, T. Ozturk, Control of macrostructure in deformation processing of metal/metal laminates, Acta Mater. 53 (2005) 375-381.
  • [2] X.K. Peng, R. Wuhrer, G. Heness, W.Y. Yeung, On the interface development and fracture behaviour of roll bonded copper/aluminium metal laminates, J. Mater. Sci. 34 (1999) 2029-2038.
  • [3] K.H. Zuo, D.L. Jiang, Q.L. Lin, Y. Zeng, Improving the mechanical properties of Al2O3/Ni laminated composites by adding Ni particles in Al2O3 layers, Mater. Sci. Eng. A443 (2007) 296-300.
  • [4] K. Hwu, B. Derby, Fracture of metal/ceramic laminates I - transition from single to multiple cracking, Acta Mater. 47 (1999) 529-543.
  • [5] M. Mitkov, D. Janković, D. Kićević, Microstructure and strength of solid state bonded Ni-AlO-NiAl laminates, Mater. Sci. Forum 282-283 (1998) 233-238.233
  • [6] S.M.R. Khalili, R.K. Mittal, S.G. Kalibar, A study of the mechanical properties of steel/aluminium/GRP laminates, Mater. Sci. Eng. A412 (2005) 137-140.
  • [7] L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A435-436 (2006) 638-647.
  • [8] S. Tixier-Boni, H. Van Swygenhoven, Hardness enhancement of sputtered Ni3Al/Ni multilayers, Thin Solid Films 342 (1999) 188-193.
  • [9] A.S. Edelstain, R.K. Everett, G.G. Richardson, S.B. Qadri, J.C. Foley, J.H. Perepezko, Reaction kinetics and biasing in Al/Ni multilayers, Mater. Sci. Eng. A195 (1995) 13-19.
  • [10] J.C. Gachon, A.S. Rogachev, H.E. Grigoryan, E.V. Illarionova, J.J. Kuntz, D.Y. Kovalev, A.N. Nosyrev, N.V. Sachkova, P.A. Tsygankov, On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms, Acta Mater 53 (2005) 1225-1231.
  • [11] H. Wang, J. Han, S. Du, D.O. Northwood, Effects of Ni foil thickness on the microstructure and tensile properties of reaction synthesized multilayer composites, Mater. Sci. Eng. A445-446 (2007) 517-525.
  • [12] W.H. Xu, X.K. Meng, C.S. Yuan, A.H.W. Ngan, K. Wang, Z.G., The synthesis and mechanical property evaluation of Ni/Ni3Al microlaminates, Mater. Lett. 46 (2000) 303-308.
  • [13] A. Dziadoń, R. Mola, Compression behaviour of magnesium - eutectic mixture layered composite, Kompozyty (Composites) 4 (2008) 364-368.
  • [14] H. Cao, J.P.A. Lofvander, A.G. Evans, R.G. Rowe, D.W. Skelly, Mechanical properties of an in situ synthesized Nb/Nb3Al layered composite, Mater. Sci. Eng. A185 (1994) 87-95.
  • [15] D.R. Bloyer, K.T. Venkateswara Rao, R.O. Ritchie, Laminated Nb/Nb3Al composites: effect of layer thickness on fatigue and fracture behaviour, Mater. Sci. Eng. A239-240 (1997) 393-398.
  • [16] H. Takuda, H. Fujimoto, N. Hatta, Formabilities of steel/aluminium alloy laminated composite sheets, J. Mater. Sci. 33 (1998) 91-97.
  • [17] L.M. Peng, H. Li, J.H. Wang, Processing and mechanical behaviour of laminated titanium-titanium tri-aluminide (Ti-Al3Ti) composites, Mater. Sci. Eng. A406 (2005) 309-318.
  • [18] D. Alman, C.P. Dogan, J.A. Hawk, J.C. Rawers, Processing, structure and properties of metal-intermetallic layered composites, Mater. Sci. Eng. A192-193 (1995) 624-632.
  • [19] A. Dziadoń, M. Konieczny, Structural transformations at the Cu-Ti interface during synthesis of copper-intermetallics layered composite, Kovové Mater. 42 (2004) 42-50.
  • [20] M. Konieczny, A. Dziadoń, Strain behaviour of copper-intermetallic layered composite, Mater. Sci. Eng. A460-461 (2007) 238-242.
  • [21] M. Konieczny, Deformation mechanisms in copper-intermetallic layered composite at elevated temperatures, Kovové Mater. 45 (2007) 313-317.
  • [22] M. Konieczny, A. Dziadoń, Mechanical behaviour of multilayer metal-intermetallic laminate composite synthesised by reactive sintering of Cu/Ti foils, Arch. Metall. Mater. 52 (2007) 555-562.
  • [23] M. Konieczny, Processing and microstructural characterisation of laminated Ti-intermetallic composites synthesised using Ti and Cu foils, Mater. Lett. 62 (2008) 2600-2602.
  • [24] M. Ghosh, S. Chaterjee, Diffusion bonded transition joints of titanium to stainless steel with improved properties, Mater. Sci. Eng. A358 (2003) 152-158.
  • [25] H. Kato, S. Abe, T. Tomizawa, Interfacial structures and mechanical properties of steel-Ni and steel-Ti diffusion bonds, J. Mat. Sci. 32 (1997) 5225-5232.
  • [26] J. Murray, Alloy phase diagrams, ASM Handbook, Ed. ASM International 3, 1992, 180.
  • [27] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer, Mater. Sci. Eng. A407 (2005) 154-160.
  • [28] J.A. van Beek, A.A. Kodentsov, F.J.J. van Loo, Phase equilibria in the Cu-Fe-Ti system at 1123 K, J. Alloys Comp. 217 (1995) 97-103.
  • [29] V. Raghavan, Cu-Fe-Ti (Copper-Iron-Titanium), J. Phase Equilib. 23 (2002) 172-174.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0046-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.