PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical and numerical model of directional solidification including initial and terminal transients of the process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The, developed in this study, simple model and numerical solution of diffusion growth of the solid phase under the conditions of directional solidification allow for the effect of constituent diffusion in both liquid and solid phase and assume the process run in which (like in reality) the preset parameter is the velocity of sample (pulling velocity) at a preset temperature gradient. The solid/liquid interface velocity is not the process parameter (like it is in numerous other solutions proposed so far) but a function of this process. The effect of convection outside the diffusion layer has been included in mass balance under the assumption that in the zone of convection the mixing is complete. The above assumptions enabled solving the kinetics of growth of the solid phase (along with the diffusion field in solid and liquid phase) under the conditions of diffusion well reflecting the process run starting with the initial transient state, going through the steady state period in central part of the casting, and ending in a terminal transient state. In the numerical solution obtained by the finite difference method with variable grid dimensions, the error of the mass control balance over the whole process range was 1- 2%.
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland, kaptur@agh.edu.pl
Bibliografia
  • [1] W.A. Tiller, K.A. Jackson, J.W. Rutter and B. Chalmers, The redistribution of solute atoms during solidification of metals, Acta Met. 1 (1953) 428-437.
  • [2] V.G. Smith, W.A. Tiller and J.W. Rutter, A mathematical analysis of solute redistribution during solidification, Canad. J. Phys. 33 (1955) 723-745.
  • [3] J.J. Favier, Macrosegregation - I. Unified analysis during non-steady state solidification, Acta Met. 29 (1981) 197-204.
  • [4] H.D. Brody and M.C. Flemings, Solute redistribution in dendritic solidification, Trans. TMS-AIME 236 (1966) 615-624.
  • [5] W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications, Switzerland (1989).
  • [6] T. Himemiya and T. Umeda, Solute redistribution model of dendritic solidification considering diffusion in both the liquid and solid phases, ISIJ Intern. 38 (1998) 730-738.
  • [7] L. Nastac and D.M. Stefanescu, An analytical model for solute redistribution during solidification of planar, columnar, or equiaxed morphology, Metall. Trans. A 24A (1993) 2107-2118.
  • [8] A. Karma, W.J. Rappel, B.C. Fuh and R. Trivedi, Model of banding in diffusive and convective regimes during directional solidification of peritectic systems, Metall. Mater. Trans. A 29A (1998) 1457-1470.
  • [9] J. Shin, S. Liu, J.H. Lee and R. Trivedi, Determining solute diffusion coefficient by a directional solidification technique, Proc. '5th Decennial Int. Conf. on Solidification Processing', Sheffield (2007) 387-391.
  • [10] K. Ellingsen, Q. Du, A. Mo and M.M'Hamdi, Assessment of an approximate method for calculation the solidification path in macrosegregation modelling of multicomponent aluminium alloys, Proc. '5th Decennial Int. Conf. on Solidification Processing', Sheffield (2007) 442-446.
  • [11] Q. Du, D.G. Eskin and L. Katgerman, Modeling macrosegregation during direct-chill casting of multicomponent aluminium alloys, Metall. Mater. Trans. A 38A (2007) 180-189.
  • [12] J. Chen, S.N. Tewari, D. Magadi and H.C. De Groh III, Effect of crucible diameter reduction on the convection, macrosegregation, and dendritic morphology during directional solidification of Pb-2.2wt%Sb alloy, Metall. Mater. Trans. A 34A (2003) 2985-2990.
  • [13] J.A. Burton, R.C. Prim and W.P. Schlichter, The distribution of solute in crystal growth from the melt, J. Chem. Phys. 21 (1953) 1987-1991.
  • [14] D.M. Stefanescu: Science and engineering of casting solidification, Kluwer Academic/Plenum Publisher, Dortrecht, London, Moscow (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0046-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.