Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the method of determination of the continuous casting cross-section, in which average temperature was equal to a prescribed value. The method proposed here does not require evaluation of temperature distribution. On the basis of input data, a linear or non-linear equation is created (depending on the heat flux form on the region boundaries), which solution enabled determination of the cross-section.
Czasopismo
Rocznik
Tom
Strony
51--54
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Silesian University of Technology, Institute of Mathematics, Kaszubska 23, 44-100 Gliwice, Poland, d.slota@polsl.pl
Bibliografia
- [1] E. Lait, Mathematical modeling of heat flow in the continuous casting of steel, Ironmaking and Stellmaking, vol. 44 (1973) 589-594.
- [2] B. Mochnacki, J. S. Suchy, Numerical Methods in Computations of Foundry Processes, PFTA, Cracow (1995).
- [3] V. Alexiades, A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publ. Corp., Washington (1993).
- [4] L. I. Rubinstein, The Stefan Problem, AMS, Providence (1971).
- [5] R. Grzymkowski, D. Słota, Moving boundary problem solved by Adomian decomposition method, in Fluid Structure Interaction and Moving Boundary Problems, S.K.Chakrabarti et al. (eds.), Wit Press, Southampton (2005) 653-660.
- [6] R. Grzymkowski, D. Słota, Stefan problem solved by Adomian decomposition method, International Journal of Computer Mathathematics, vol. 82 (2005) 851-856.
- [7] R. Grzymkowski, M. Pleszczyński, D. Słota, Application of the Adomian decomposition method for solving the Stefan problem, in Numerical Heat Transfer 2005, EUROTHERM Seminar 82, A.J.Nowak et al. (eds.), Silesian Univ. of Technology, Gliwice (2005) 249-258.
- [8] R. Grzymkowski, M. Pleszczyński, D. Słota, Comparing the Adomian decomposition method and Runge-Kutta method for the solutions of the Stefan problem, International Journal of Computer Mathathematics, vol. 83 (2006) 409-417.
- [9] D. Słota, Direct and inverse one-phase Stefan problem solved by variational iteration method, International Journal Computers and Mathematics with Applications, vol. 54 (2007) 1139-1146.
- [10] N. Al-Khalidy, J. Skorek, A fixed grid numerical technique for the Stefan problems, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 43 (1995) 493-504.
- [11] R. Cholewa, A. J. Nowak, L. C. Wrobel, Application of BEM and sensitivity analysis to the solution of the governing diffusion-convection equation for a continuous casting process, Engineering Analysis with Boundary Elements, vol. 28 (2004) 389-403.
- [12] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford (1984).
- [13] A. Fic, A. J. Nowak, R. Białecki, Heat transfer analysis of the continuous casting process by the front tracking BEM, Engineering Analysis with Boundary Elements, vol. 24 (2000) 215-223.
- [14] E. Majchrzak, B. Mochnacki, Application of the BEM in the thermal theory of foundry, Engineering Analysis with Boundary Elements, vol. 16 (1995) 99-121.
- [15] J. C. W. Rogers, A. E. Berger, M. Ciment, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM Journal on Numerical Analysis, vol. 16 (1979) 563-587.
- [16] V. R. Voller, C. R. Swaminathan, B. G. Thomas, Fixed grid techniques for phase change problems: a review, International Journal for Numerical Methods in Engineering, vol. 30 (1990) 875-898.
- [17] M. Zerroukat, C. R. Chatwin, Computational Moving Boundary Problems, Research Studies Press, Taunton (1994).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0046-0010