PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical prediction of the hardening stresses in at elements of steel C80U

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents numerical model of thermal phenomena, phase transformation and mechanical phenomena associated with hardening of carbon steel C80U. The stresses generated during hardening were assumed to result from thermal load, structural plastic deformations and transformation plasticity. The hardened material was assumed to be elastic-plastic, and in order to mark plastic strains the non-sothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. Thermophysical values of mechanical phenomena dependent on both the phase composition and temperature. The numerical simulations of hardening processes of axisymetrical object after full austenitisations were performed.
Rocznik
Strony
13--16
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Czestochowa University of Technology, Institute of Mechanics and Machine Design, 42-200 Częstochowa, 73 Dąbrowskiego St., bokota@imipkm.pcz.czest.pl
Bibliografia
  • [1] A.J. Fletcher, Thermal Stress and Strain Generation in Heat Treatment, Elsevier, London, 1989.
  • [2] A. Bokota, S. Iskierka, Effect of phase transformation on stress states in surface layer of laser hardened carbon steel, ISIJ International, 36 (11) (1996) 1383-1391.
  • [3] L. Huiping, Z. Guoqun, N. Shanting, H. Chuanzhen, FEM simulation of quenching process and experimental verification of of simulation results, Material Science and Engineering A 452-453 (2007) 705-714.
  • [4] B. Raniecki, A. Bokota, S. Iskierka, R. Parkitny, Problem of determination of transient and residual stresses in a cylinder under progressive induction hardening, The 3rd International Conference On Quenching And Control Of Distortion, Prage, Czech Republic, Published by ASM International, (1999) 473-484.
  • [5] T. Domański, Numerical modelling of surface hardening elements of steel. PhD Thesis, Częstochowa 2005. (in Polish)
  • [6] A. Bokota, T. Domański, Numerical analysis of thermo-mechanical phenomena of hardening process of elements made of carbon steel C80U. Archives of Metallurgy and Materials, Nr 2, vol. 52, (2007) 277-288 (in Printed).
  • [7] M. Cherkaoui, M. Berveiller, H. Sabar, Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity, vol 14, no. 7 (1998) 597-626.
  • [8] M. Coret, S. Calloch, A. Combescure, Experimental study of the phase transformation plasticity of 16MND5 low carbon steel induced by proportional and nonproportional biaxial loading paths. European Journal of Mechanics A/Solids 23 (2004) 823-842.
  • [9] M. Coret, A. Combescure, A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels), International Journal of Mechanical Sciences, 44 (2002) 1947-1963.
  • [10] O.C. Zienkiewicz, R.L. Taylor, The finite element method, Butterworth-Heinemann, Fifth edition, vol. 1,2,3, 2000.
  • [11] M. Pietrzyk, R. Kuziak, Coupling the Thermal-Mechanical Finite-Element Approach with Phase Transformation Model for Low Carbon Steels, Mat. 2. Konf. ESAFORM, ed., J. Covas, Guimaraes (1999) 525-528.
  • [12] T. Domański, A. Bokota, Numerical model of phase transformation of steel C80U during hardening. Archives of Foundry Engineering, Nr x, vol. x, (2007) x-x (in Printed).
  • [13] D.P. Koistinen, R.E. Marburger, A General Equation for Austenite - Martensite Transformation in Pure Carbon Steels, Acta Metallurgica 7 (1959) 59-60.
  • [14] E.P. Silva, P.M.C.L. Pacheco, M.A. Savi, On the thermo-mechanical coupling in austenite-martensite phase transformation related to the quenching process, International Journal of Solids and Structures, 41 (2004) 1139-1155.
  • [15] L. Taleb, F. Sidoroff, A micromechanical modelling of the Greenwood-Johnson mechanism in transformation induced plasticity, International Journal of Plasticity, 19 (2003) 1821-1842.
  • [16] S. Caddemi, J.B. Martin, Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis, Int. J. Numer. Meth. Eng., 31 (1991) 177-191.
  • [17] J. Jasiński, Influence of fluidized bed on diffusional processes of saturation of steel surface layer. Seria: Inżynieria Materiałowa Nr 6, Wydawnictwo WIPMiFS, Częstochowa 2003 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0034-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.