PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complex analysis of rupture risk of intracranial saccular aneurysms upon hemodynamic and geometric parameters

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper includes a new concept of assessment of rupture risk of intracranial saccular aneurysms using geometric and hemodynamic parameters of aneurysm, artery and blood. Previous decision systems are mainly based on the size of aneurysm and frequency of subarrachnoid hemorrhages, therefore after performing simulation tests it has been proved that the complex assessment of clinical cases is possible thanks to evaluation of shape and size coefficient of a secondary aneurysm occurring on the surface of a primary aneurysm, width of a primary aneurysm neck, curvature of an artery on which a primary aneurysm is located and the size of blood impingement area at artery wall. The paper contains results of the simulation tests of blood flow in the primary and secondary aneurysm, as well as verification of proposed criteria of rupture risk assessment for 5 clinical cases.
Twórcy
Bibliografia
  • 1. Van Gijn J., Rinkel G.: Subarachnoid hemorrhage: diagnosis, causes and management. Brain 2001, 124, 249-278.
  • 2. Forget T.R. Jr, Benitez R., Veznedaroglu E.,et al.: A review of size and location of ruptured intracranial aneurysms. Neurosurgery 2001, 49(6), 1322-1326.
  • 3. Rogers L.: Intracranial aneurysm size and potential for rupture. J. Neurosurg 1987, 67, 475-476.
  • 4. Schievink W.I., Piepgras D.G., Wirth F.P: Rupture of previously documented small asymptomatic saccular intracranial aneurysms. J. Neurosurg. 1992, 76, 1019-1024.
  • 5. Burleson A.C., Strother C.M., Turitto V.T.: Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 1995, 37, 774-782.
  • 6. Batjer H.H., Samson D.S.: Basilar bifurcation aneurysm. The Practice of Neurosurgery, Baltimore, Williams and Wilkins 1996, 2261-2270.
  • 7. Ho H., Crute D., Batjer H.H.: Surgical techniques for intracranial aneurysms. Principles of Neurosurgery, Second Edition. Philadelphia, Lippincott-Raven Publisbers 1999, 311-337.
  • 8. Sundt T.M. Jr, Kobayashi S.,Fode N.C., Whisnant J.P.: Results and complications of surgical management of 809 intracranial aneurysms in 722 cases. Related and unrelated to grade of patient, type of aneurysm, and timing of surgery. J. Neurosurg. 1982, 56, 753-765.
  • 9. Wirth F.P.: Surgical treatment of incidental intracranial aneurysm. Clin. Neurosurg. 1986, 33, 125-135.
  • 10. Ford M.D., Stuhne G.R., Nikolov H.N., Habets D.F., Lownie S.R, Holdsworth D.W., Steinman D.A.: Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 2005, 24(12), 1586-1592.
  • 11. Foutrakis G.N., Yonas H., Sclabassi R.J.: Saccular aneurysm formation in curved and bifurcating arteries.AJNR Am. J. Neuroradiol. 1999,20, 1309-1317.
  • 12. Kumar B.Y, Naidu K.B.: Hemodynamics in aneurysm. Computers and Biomedical Research 1996, 29, 119-139.
  • 13. Metcalfe R.W.: The promise of computational fluid dynamics as a tool for delineating therapeutic options in the treatment of aneurysms. AJNR Am. J. Neuroradiol. 2003, 24, 553-554.
  • 14. Shojima M., Oshima M., Takagi K., Torii R., Hayakawa M., Katada K., et al.: Magnitude and role of wall shear stress on cerebral aneurysm. Computational Fluid Dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004, 35, 2500-2505.
  • 15. Stuhne G.R., Steinman D.A.: Finite element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 2004, 126(3), 382-387.
  • 16. Kerber C.W., Heilman C.B.: Flow in experimental berry aneurysms: method and model. AJNR Am. J. Neuroradiol. 1983, 4(3), 374-377.
  • 17. Liepsch D.W., Steiger H.J., Poll A., Reulen H.J.: Hemodynamic stress in lateral saccular aneurysms. Biorheology 1987, 24, 689-710.
  • 18. Nagayasu S., Kikuchi H., Nagasawa S., Ohtsuki H.: Basilar artery occlusion therapy for giant aneurysm: hemodynamic analysis by hydraulic vascular model. No Shinkei Geka 1992,20(11), 1161-1167.
  • 19. Yamaguchi K., Nagasawa S., Kawabata S., Kawanishi M., et al.: Paraclinoid aneurysms of the internal carotid artery: hydraulic simulation study on their locations and shape of the carotid siphon. Neurol. Res. 1999, 21(8), 733-736.
  • 20. Steiger H J., Liepsch D.W., Poll A., Reulen H.J.: Hemodynamic stress in terminal saccular aneurysms: A laser-Doppler study. Heart Vessels 1988, 4, 162-169.
  • 21. Tateshima S.,Murayama Y.,Villablanca J.P.,Morino T.,et al.:In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 2003, 34(1), 187-192.
  • 22. Di Martino E.S., Guadagni G., Fumero A., Ballerini G., Spirito R., Biglioli P., et al.: Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 2001, 23, 647-655.
  • 23. Tateshima S.,Murayama Y, Villablanca J.P., Morino T., et al.: Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J. Neurosurg. 2001, 95, 1020-1027.
  • 24. Villablanca J.P., Jahan R., Hooshi R, Lim S., et al.: Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am. J. Neuroradiol. 2002, 23,1187-1198.
  • 25. Jou L.D,, Quick C.M., Young W.L., et al.: Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am. J. Neuroradiol. 2003, 24(9), 1804-1810.
  • 26. Satoh T., Onoda K., Tsuchimoto S.: Visualization of intraaneurysmal flow patterns with transluminal flow images of 3D MR angiograms in conjunction with aneurysmal configurations. AJNR Am. J. Neuroradiol. 2003, 24, 1436-1445.
  • 27. Aoki N., Kitahara T., Fukui T., et al.: Management of unruptured intracranial aneurysm in Japan: a Markovian decision analysis with utility measurements based on the Glascow Outcome Scale. Med. Decis Making 1998, 18, 357-364,
  • 28. Johnston S.C., Gress D.R., Kahn J.G.: Which unruptured cerebral aneurysms should be treated? A cost-utility analysis. Neurology 1999, 52, 1806-1815.
  • 29. Leblanc R., Worsley K.J.: Surgery of unruptured, asymptomatic aneurysms: a decision analysis. Can. J.Neurol.Sci. 1995, 22, 30-35.
  • 30. Mitchell R, Jakubowski J.: Risk analysis of treatment of unruptured aneurysm. J. Neurol. Neurosurg. Psychiatry 2000, 68. 577-580.
  • 31. Yoshimoto Y., Wakai S.: Cost-effectiveness analysis of screening for asymtomatic, unruptured intracranial aneurysms. A mathernatical model. Stroke 1999, 30, 1621-1627.
  • 32. Abruzzo T., Shengelaia G.G., Dawson III R.C., Owens D.S., Cawley C.M., Gravanis M.B.: Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. AJNR 1998, 19, 1309-1314.
  • 33. Frerichs K.U., Stieg P.E., Friedlander R.M.: Predictionof aneurysm rupture site by anangiographically identified bleb at the aneurysm neck. J. Neurosurg. 2000, 93, 517.
  • 34. Crompton M.R.: Mechanism of growth and rupture in cerebral berry aneurysms. British Journal of Neurosurgery 1966; 1(5496), 1138-1142.
  • 35. Sampei T., Mizuno M., Nakajima S., Suzuki A., Hadeishi H., Ishikawa T., Yasui N.: Clinical study of growing up aneurysms: report of 25 cases.No Shinkei Geka 1991, 19, 825-830.
  • 36. Steiger H.J.: Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir. Suppl. (Wien), 1990,48, 1-57.
  • 37. Meng H., Feng Y, Woodward S.H., Bendok B.R., Hanel R.A., Guterman L.R., Hopkins L.N.: Ma-thematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth. Neurological Research 2005, 27, 459-465.
  • 38. Szafrański K.: Analysis of rupture of intracranial saccular aneurysms, 6th IFAC Symposium on Modelling and Control in Biomedical Systems MCBMS'06, Reims 2006, 495-500, ISBN-10: 0080445306.
  • 39. Aenis M., Stancampiano A.P., Wakhloo A.K., Lieber B.B.: Modeling of flow in a straight-stented and non-stented side wall aneurysm model. J. Biomech. Eng. 1997, 119, 206-212.
  • 40. Foutrakis G.N., Yonas H., Sclabassi R.J.: Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am. J. Neuroradiol. 1999,20, 1309-1317.
  • 41. Kumar B.V., NaiduK.B.: Hemodynamics in aneurysm. Computers and Biomedical Research 1996, 29, 119-139.
  • 42. Szafrański K.: Analysis of hemodynamics of intracranial saccular aneurysms. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2007, Lyon 2007, ID 2859, ISBN: 1-4244-0788-5.
  • 43. Hoi Y, Meng H., Woodward S.H., Bendok B.R., Hanel R.A., Guterman L.R., Hopkins L.N.: Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg. 2004, 101, 676-681.
  • 44. Gijsen F.J.H., Vosse F.N. van de, Janssen J.D.: The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 1999, 32, 601-608.
  • 45. Hassan T., Timofeev E.V., Saito T., Shimizu H., Ezura M., Tominaga T., et al.: Computational replicas: anatomical reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography. AJNR Am. J. Neuroradiol. 2004, 25, 1356-1365.
  • 46. Steiger H.J., Poll A., Liepsch D., Reulen H.J.: Basic flow structure in saccular aneurysms: A flow visualization study. Heart Vessels 1987, 3, 55-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0030-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.