PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Signal identification and noise suppression in multi-channel ECG and MCGby Independent Component Analysis (ICA)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Independent Component Analysis (ICA) is a method to decompose a multi-channel signal into statistically independent components. An overview over a second order blind identification algorithm is given and implications of its constraints for the application on multi-channel ECG and magnetocardiogram (MCG) are discussed. We tested parameters for that ICA algorithm that led to a good separation of low frequency noise and power line interference from the heart signal. The usefulness of ICA to separate different physiological signals is shown in examples from a fetal ECG recording and in ECGs/MCGs from atrial flutter patients. While the separation of noise and physiological signal yields stable results, the identification of distinct physiological components of the heart signal by ICA can only be achieved in special cases and needs further investigations.
Twórcy
autor
Bibliografia
  • [1] Jung T.P., Makeig S., Westerfield M., Townsend J., Courchesne E., Sejnowski T.J.: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 2000, 111(10), 1745-1758.
  • [2] Wübbeler G., Ziehe A., Mackert B.M., Muller K.R., Trahms L., Curio G.: Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans. IEEE Trans. Biomed. Eng. 2000, 47(5), 594-599.
  • [3] Sander T.H., Wubbeler G., Lueschow A., Curio G., Trahms L.: Cardiac artifact subspace identification and elimination in cognitive MEG data using time-delayed decorrelation. IEEE Trans. Biomed. Eng. 2002, 49(4), 345-354.
  • [4] Owis M.I., Youssef A.B., Kadah Y.M.: Characterisation of electrocardiogram signals based on blind source separation. Med. Biol. Eng. Comput. 2002, 40(5), 557-564.
  • [5] Zarzoso V., Nandi A.K.: Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 2001, 48(1), 12-18.
  • [6] Cardoso, J.-F.: Multidimensional Independent Component Analysis, Proc. ICASSP 98, 1998, 4, 1941-4.
  • [7] Wang Z., Chen J.D.: Blind separation of slow waves and spikes from gastrointestinal myoelectrical recordings. IEEE Trans. Inf. Technol. Biomed. 2001, 5(2), 133-137.
  • [8] Liang H.: Adaptive independent component analysis of multichannel electrogastrograms. Med. Eng. Phys. 2001,23(2), 91-97.
  • [9] De Lathauwer L., De Moor B., Vandewalle J.: Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 2000, 47(5), 567-572.
  • [10] URL: http://www.esat.kuleuven.ac.be/sista/daisy/ 26.11.2003. [Cutaneous potential recordings of a pregnant woman, Biomedical Systems,96-012.], In: De Moor BLR. (Eds.), DaISy: Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium.
  • [11] Drung D.: The PTB 83-SQUID system for biomagnetic applications in a clinic. IEEE Trans. Appl. Supercond 1996, 5(2), 2112-2117.
  • [12] Belouchrani A., Abdel-Meraim K., Cardoso J.F., Moulines.: A blind source separation technique based on second-order statistics. IEEE Trans. Sig. Proc. 1997,45, 434-444.
  • [13] Sander T.H., Lueschow A., Curio G., Trahms L.; Time delayed decorrelation for the identification of the cardiac artifact in MEG data. Biomed. Tech. 2002,47(1/2), 573-576.
  • [14] Steinhoff U., Mäntynen V., Kürsten R., Nenonen J.: Independent component analysis for the suppression of different noise in magnetocardiographic data. Biomed. Tech. 2003,48(1), 170-171.
  • [15] Hren R., Steinhoff U., Gessner C, Endt P., Goedde P., Agrawal R., Oeff M., Lux R.L., Trahms L.: Value of magnetocardiographic QRST integral maps in the identification of patients at risk of ventricular arrhythmias. Pacing. Clin. Electrophysiol., 1999, 22(9), 1292-1304.
  • [16] Hyvärinen A., Karhunen J., Oja E.: Independent Component Analysis, New York, John Wiley & Sons, 2001.
  • [17] Cardoso J.F. and Souloumiac A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F, 1993, 140(6), 362-370.
  • [18] Bousseljot R., Kreiseler D.: Ergebnisse der EKG-Interpretation mittels Signalmustererkennung. Herzschr. Elektrophys., 2000, 11, 197-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0008-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.