PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Progressive die-back and death of motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fischer et al. [1] commented that the longest and largest nerve fibers with the highest metabolic demand appear to be the most susceptible to "dying-back" in a wide variety of degenerative and toxic conditions of the central and peripheral nervous systems. In the high copy number G93AmSOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (ALS) we tested the hypothesis that the largest motoneurons which have the most terminal connections are the most susceptible to the disease. In a time course study of motoneuron, muscle and motor unit properties in fast - and slow-twitch hindlimb muscles of G93A and wild type mice, we found a rapid decline in numbers of functional motor units and motoneurons that progresses from birth to a plateau after 90-100 days of life with surprisingly Iittle compensatory axonal sprouting. Fast motoneurons are the most susceptible, contrasting with the slow motoneurons. Preliminary evidence of loss of S100 reactive perisynaptic Schwann cells at the denervated endplate regions of the affected muscles indicate loss paralIeIs rapid progression of disease with consequent decline in muscle force and motor unit numbers, folIowed closely in time by motoneuron death.
Twórcy
autor
  • Division of Physical Medicine and Rehabilitatian, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada, T6G 2S2
autor
  • Division of Physical Medicine and Rehabilitatian, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
autor
  • Division of Physical Medicine and Rehabilitatian, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
autor
  • Division of Physical Medicine and Rehabilitatian, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
Bibliografia
  • [1] Fischer L.R., Culver D.G., Tennant P., Davis A.A., Wang M., Castellano-Sanchez A., Khan J., Polak M.A., Glass J.D.: Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 2004, 185, 232-240.
  • [2] Gurney M.E., Pu H., Chiu A. Y., Dal Canto M.C., Polchow C.Y., Alexander D.D., Caliendo J., Hentati A., Kwon Y.W., Deng H.X.: Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 1994, 264, 1772-1775.
  • [3] Rowland L.P., Shneider N.A.: Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001, 344,1688-1700.
  • [4] Strong M., Rosenfeld J.: Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph. Lateral. Scler. Other Motor Neuron. Disord. 2003,4, 136-143.
  • [5] Wilson C.M., Grace G.M., Munoz D.G., He B.P., Strong M.J.: Cognitive impairment in sporadic ALS: a pathologic continuum underlying a multisystem disorder. Neurol. 2001, 57, 651-657.
  • [6] Hand C.K., Rouleau G.A.: Familial amyotrophic lateral sclerosis. Muscle Nerve 2002,25, 135-159.
  • [7] Magnus T., Beck M., Giess R., Puls I., Naumann M., Toyka K.V.: Disease progression in amyotrophic lateral sclerosis: predictors of survival. Muscle Nerve 2002, 25, 709-714.
  • [8] Iwasaki Y., Ikeda K., Ichikawa Y., Igarashi O., Kinoshita M.: The diagnostic interval in amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg. 2002, 104, 87-89.
  • [9] Simpson E.P., Yen A.A., Appel S.H.: Oxidative Stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr. Opin Rheumatol. 2003, 15, 730-736.
  • [10] Rosen D.R.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 364, 362.
  • [11] Reaume A.G., Elliott J.L., Hoffman E.K., Kowall N.W., Ferrante R.J., Siwek D.F., Wilcox H.M., Flood D.G., Beal M.F., Brown R.H., Jr., Scott R.W., Snider W.D.: Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 1996, 13, 43-47.
  • [12] Agar J., Durham H.: Relevance of oxidative injury in the pathogenesis of motor neuron diseases. Amyotroph. Lateral. Scler. Other Motor Neuron Disord. 2003, 4, 232-242.
  • [13] Heath PR., Shaw P.J.: Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002, 26, 438-458.
  • [14] Spalloni A., Pascucci T., Albo F., Ferrari F., Puglisi-Allegra S., Zona C., Bernardi G., Longone P.: Altered vulnerability to kainate excitotoxicity of transgenic-Cu/Zn SOD1 neurones. NeuroReport 2004, 15, 2477-2480.
  • [15] Tomiyama M., Rodriguez-Puertas R., Cortes R., Pazos A., Palacios J.M., Mengod G.: Flip and flop splice variants of AMPA receptor subunits in the spinal cord of amyotrophic lateral sclerosis. Synapse 2002, 45, 245-249.
  • [16] Ince P., Stout N., Shaw P., Slade J., Hunziker W., Heizmann C.W., Baimbridge K.G.: Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 1993, 19, 291-299.
  • [17] Alexianu M.E., Ho B.K., Mohamed A.H., La B.V, Smith R.G., Appel S.H.: The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 1994, 36, 846-858.
  • [18] Rothstein J.D., Van Kammen M., Levey A.I., Martin L.J., Kuncl R.W.: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 1995, 38, 73-84.
  • [19] Meldrum B., Garthwaite J.: Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 1990, 11, 379-387.
  • [20] Chiu A.Y., Zhai P., Dal Canto M.C., Peters T.M., Kwon Y.W., Prattis S.M., Gurney M.E. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 1995, 6, 349-362.
  • [21] Hall E.D., Oostveen J.A., Gurney M.E.: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. GLIA 1998, 23, 249-256.
  • [22] Dal Canto M.C., Gurney M.E.: Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995, 676, 25-40.
  • [23] Wengenack T.M., Holasek S.S., Montano C.M., Gregor D., Curran G.L., Poduslo J.F.: Activation of programmed cell death markers in ventral horn motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in a transgenic mouse model. Brain Res. 2004, 1027, 73-86.
  • [24] Rich M.M., Waldeck R.F., Cork L.C., Balice-Gordon R.J., Fyffe R.E.W., Wang X., Cope T.C., Pinter M.J.: Reduced endplate currents underlie motor unit dysfunction in canine motor neuron disease. J. Neurophysiol. 2002, 88, 3293-3304.
  • [25] Greensmith L., Vrbová G.: Alterations of nerve-muscle interaction during postnatal development influence motoneurone survival in rats. Brain Res. Dev. 1992, 69, 125-131.
  • [26] Greensmith L., Sieradzan K., Vrbová G.: Possible consequences of disruption of neuromuscular contacts in early development for motoneurone survival. Acta Neurobiol. Exp. (Wars) 1993, 53, 319-324.
  • [27] Greensmith L., Vrbová G.: Motoneurone survival: a functional approach. Trends. Neurosci. 1996, 19, 450-455.
  • [28] Fu S.Y., Gordon T.: Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J. Neurosci. 1995, 15, 3876-3885.
  • [29] Fu S.Y., Gordon T.: Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J. Neurosci. 1995, 15, 3886-3895.
  • [30] Kennel P.F., Finiels F., Revah F., Mallet J.: Neuromuscular function impairment is not caused by motor neurone loss in FALS mice: an electromyographic study. NeuroReport 1996, 7, 1427-1431.
  • [31] Azzouz M., Leclerc N., Gurney M., Warter J.M., Poindron P., Borg J.: Progressive motor neuron impairment in an animal model of familial amyotrophic lateral sclerosis. Muscle Nerve 1997, 20, 45-51.
  • [32] Tötösy de Zepetnek J.E., Zung H.V., Erdebil S., Gordon T.: Innervation ratio is an important determinant of force in normal and reinnervated rat tibialis anterior muscles. J. Neurophysiol. 1992,67, 1385-1403.
  • [33] Ishihara A., Hayashi S., Roy R.R., Tamada Y., Yokoyama C., Ohira Y., Edgerton V.R., Ibata Y.: Mitochondrial density of ventral horn neurons in the rat spinal cord. Acta Anatomica 1997, 160, 248-253.
  • [34] Tam S.L., Archibald V., Tyreman N., Jassar B., Gordon T.: Increased neuromuscular activity reduces sprouting in partially denervated muscles. J. Neurosci. 2001, 21, 654-667.
  • [35] Tam S.L., Gordon T.: Neuromuscular activity impairs axonal sprouting in partially denervated muscles by inhibiting bridge formation of perisynaptic Schwann cells. J. Neurobiol. 2003,57, 221-234.
  • [36] Yang J.F., Stein R.B., Jhamandas J., Gordon T.: Motor unit numbers and contractile properties after spinal cord injury. Ann. Neurol. 1990, 28, 496-502.
  • [37] Milner-Brown H.S., Stein R.B., Lee R.G.: Pattern of recruiting human motor units in neuropathies and motor neurone disease. J. Neurol. Neurosurg. Psychiatry 1974, 37, 665-669.
  • [38] Dengler R., Konstanzer A., Kuther G., Hesse S., Wolf W., Struppler A.: Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 1990, 13, 545-550.
  • [39] Frey D., Schneider C., Xu L., Borg J., Spooren W, Caroni P.: Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 2000, 20, 2534-2542.
  • [40] Tam S.L., Gordon T.: Mechanisms controlling axonal sprouting at neuromuscular junction. J. Neurocytol. 2003, Invited review. 32, 961-974.
  • [41] Son Y.J., Thompson W. J.: Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 1995, 14, 133-141.
  • [42] Trachtenberg J.T., Thompson W J.: Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 1996, 379, 174-177.
  • [43] Gordon T. and Tam S.L.: Failure of perisynaptic Schwann cells to survive leads to inhibition of sprouting in partially denervated neonatal muscles. Sixth IBRO World Congress of Neuroscience, 2003.
  • [44] Poggi P., Marchetti C., Scelsi R.: Automatic morphometric analysis of skeletal muscle fibers in the aging man. Anat. Rec. 1987, 217, 30-34.
  • [45] Cardasis C.A., LaFontaine D.M.: Aging rat neuromuscular junctions: a morphometric study of cholinesterase-stained whole mounts and ultrastructure. Muscle Nerve 1987, 10, 200-213.
  • [46] Gardner E.: Decrease in human neurones with age. Anat. Rec. 1940, 77, 529-536.
  • [47] Vandervoort A.A., McComas A.J.: Contractile changes in opposing muscles of the human ankle joint with aging. J. Appl. Physiol. 1986, 61, 361-367.
  • [48] Tam S.L. and Gordon T.: Death of perisynaptic Schwann cells leads to failure of bridging of schwann cell processes and inhibition of sprouting in partially denervated neonatal muslces. Peripheral Nerve Society, 25, 2003.
  • [49] Almer G., Vukosavic S., Romero N., Przedborski S.: Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 1999, 72, 2415-2425.
  • [50] Bruijn L.I., Becher M.W., Lee M.K., Anderson K.L., Jenkins N.A., Copeland N.G., Sisodia S.S., Rothstein J.D., Borchelt D R., Price D.L., Cleveland D.W.: ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997, 18, 327-338.
  • [51] Kato S., Takikawa M., Nakashima K., Hirano A., Cleveland D.W., Kusaka H., Shibata N., Kato M., Nakano I., Ohama E.: New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: inclusions containing SOD1 in neurons and astrocytes. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2000, 1, 163-184.
  • [52] Rao S.D., Yin H.Z., Weiss J.H.: Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J. Neurosci. 2003, 23, 2627-2633.
  • [53] Robertson J., Kriz J., Nguyen M.D., Julien J.P.: Pathways to motor neuron degeneration in transgenic mouse models. Biochimie 2002, 84, 1151-1160.
  • [54] Clement A.M., Nguyen M.D., Roberts E.A., Garcia M.L., Boillee S., Rule M., McMahon A.P., Doucette W., Siwek D., Ferrante R.J., Brown R.H., Jr., Julien J.P., Goldstein L.S., Cleveland D.W.: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003, 302, 113-117.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0008-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.