PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Visual Evoked Potentials Detection AIgorithm for objective perimetry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective perimetry, based on the EEG signal analysis, represents a new trend in evaluation of the human visual system. At the moment, the work is concentrated on the effective algorithms of the EEG analysis for the weak transient VEP signal detection. A new algorithm for a rapid detection of visual cortical signals - the VEPDA - was developed. For evaluation of the algorithm, two approaches are considered. The first one, based on synthetic cortical potentials and artificial, spontaneous EEG, with all data generated in the developed model, and the second one, using the real EEG data taken from measurements and mixed with the synthetic VEP signal. The approach presented in this paper concerns application of VEPDA to the modelled VEP embedded in the real, ongoing EEG signal. The final step of the work is practical implementation of the method. The research results prove the validity of the algorithm applied to the modelled data. Here, the value of VEPDA usefulness in the analysis of the real EEG recording has been verified.
Twórcy
autor
  • Department of Biomedical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-956 Gdańsk, Poland
  • Department of Biomedical Engineering, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] Heckenlively J.R., Arden G.B.: Principles and Practice of Clinical Electrophysiology of Vision. St. Louis, MO: Mosby, 1991.
  • [2] Fishman G. A., Sokol S.: Electrophysiological Testing in Disorders of the Retina, Optic Nerve, and Visual Pathway, Amer. Academy Ophthalmol., 1990.
  • [3] Gevins A.S.: Analysis of electromagnetic signals of the human brain: Milestones, obstacles, and goals, IEEE Trans. Biomed. Eng., vol. BME-31, 1984, 833-850.
  • [4] Celesia G.G.: Visual Evoked Potentials, In: Niedermeyer, F., da Silva L., Electroencephalohraphy, 4th ed., Williams&Wilkins, 1999, 968-972.
  • [5] Davila C.E., Srebro R.: Subspace Averaging of Steady-State Visual Evoked Potentials, IEEE Transactions on Biomedical Engineering, 2000, 47, 6, 720-728.
  • [6] Basar E.: EEG-Brain Dynamics. Relation between EEG and Brain Evoked Potentials, Elsevier, Amsterdam, 1980.
  • [7] McGillem C.D., Aunon J.I.: Signal and noise in evoked potentials, IEEE Trans. Biomed. Eng., vol. BME-32, Dec. 1985, 1012-1016.
  • [8] Woody C.D.: Characterisation of an adaptive filter for the characterisation of variable latency neuroelectric signals, Med. Biolog. Eng., 1967, 5, 539-553.
  • [9] Walter D.O.: A posteriori Wiener filtering of average evoked responses, Electroencephalography Clin. Neurophysiol, (suppl. 27), 1969, 61-70.
  • [10] Ademoglu A., Micheli-Tzanakou E.: Analysis of pattern reversal visual evoked potentials (PRVEP’s) by spline wavelets, IEEE Trans. Biomed. Eng., 1997, 44, 881-890.
  • [11] Comon P.: Independent component analysis - A new concept?, Signal Processing, 36, 1994, 287-314.
  • [12] Drozd M., Husar P., Nowakowski A., Henning G.: Detecting Evoked Potentials with SVD and ICA Based Statistical Models, IEEE Engineering in Medicine and Biology Magazine, January/February 2005, in print.
  • [13] Cardoso J.F.: Blind signal separation: statistical principles, Proc. of the IEEE, 1998, 9, 10, 2009-2025.
  • [14] Husar P., Berkes S.: Beaming Signal Sources in Measurement of Focal Visual Evoked Cortical Potentials, Istanbul, 23rd Annual International Conference on behalf of the IEEE Engineering in Medicine and Biology Society, 2001, 4, 3265-3268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0008-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.