PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The atrophy that accompanies muscle paralysis cannot always be accounted for by altered muscle use. Muscles innervated from spinal segments near a spinal cord injury also undergo denervation due to death of motoneurons. Intrinsic hand muscles are particularly vulnerable to complete denervation after human cervical spinal cord injury. Early intervention is needed to prevent muscle degeneration following denervation. Neuron replacement is one strategy to restore innervation to denervated muscles and to rescue muscle. Even if the muscles are not under voluntary control, reinnervated muscles can be activated electrically to generate simple functional behaviors.
Twórcy
autor
  • The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14 Terrace (R-48), Miami, FL 33136, USA
  • The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, USA
Bibliografia
  • [1] Maynard F.M. Jr., Bracken M.B., Creasey G., Ditunno J.F. Jr., Donovan W.H., Ducker T.B., Garber S.L., Marino R.J., Stover S.L., Tator C.H., Waters R.L., Wilberger J.E., Young, W.: International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord 1997, 35, 266-274.
  • [2] Jaweed M.M., Herbison G.J., Ditunno J.F.: Wrist extensor muscle strength measurement by force transducer in normal and quadriplegic subjects. ASIA Abstr. Digest 1987, 13, 135-136.
  • [3] Schwartz S., Cohen M.E., Herbison G.J., Shah A.: Relationship between two measures of upper extremity strength: manual muscle test compared to hand-held myometry. Arch. Phys. Med. Rehabil. 1992, 73, 1063-1068.
  • [4] Needham-Shropshire B.M., Klose K.J., Tucker M.E., Thomas C.K.: Manual muscle test score and force comparisons after cervical spinal cord injury. J. Spinal Cord Med. 1997, 20, 324-330.
  • [5] Thomas C.K., Noga B.R.: Physiological methods to measure motor function in humans and animals with spinal cord injury. J. Rehabil. Res. Dev. 2003, 40, 25-33.
  • [6] Mortimer J.T.: Motor prostheses, In: V.B. Brooks (Ed.). Handbook of Physiology. Section 1. The Nervous System American Physiological Society Bethesda 1981, 155-187.
  • [7] Shields R.K.: Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J. Neurophysiol. 1995, 73, 2195-2206.
  • [8] Stein R.B., Gordon T., Jefferson J., Sharfenberger A., Yang J.F., Tötösy de Zepetnek J., Belanger M.: Optimal stimulation of paralyzed muscle after human spinal cord injury. J. Appl. Physiol. 1992, 72, 1393-1400.
  • [9] Thomas C.K.: Contractile properties of human thenar muscles paralyzed by spinal cord injury. Muscle Nerve 1997, 20, 788-799.
  • [10] Bélanger M., Stein R.B., Wheeler G.D., Gordon T., Leduc B.: Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch. Phys. Med. Rehabil. 2000, 81, 1090-1098.
  • [11] Gordon T., Mao J.: Muscle atrophy and procedures for training after spinal cord injury. Phys. Ther. 1994, 74, 50-60.
  • [12] Lieber R.L., Johansson C.B., Vahlsing H.L., Hargens A.R., Feringa E.R.: Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. I. Contractile properties. Exp. Neurol. 1986, 91, 423434.
  • [13] Gerrits H.L., de Haan A., Hopman M.T., Der Woude L.H., Jones D.A., Sargeant A.J.: Contractile properties of the quadriceps muscle in individuals with spinal cord injury. Muscle Nerve 1999, 22, 1249-1256.
  • [14] Peckham P.H., Mortimer J.T., Marsolais E.B.: Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clin. Orthop. 1976, 114, 326-333.
  • [15] Thomas C.K., Zaidner E.Y., Calancie B , Broton J.G., Bigland-Ritchie B.R.: Muscle weakness, paralysis and atrophy after human cervical spinal cord injury. Exp. Neurol. 1997, 148, 414-423.
  • [16] Thomas C.K., Zijdewind I.: Fatigue of muscles weakened by death of motoneurons. Muscle Nerve 2005, in press.
  • [17] Castro M.J., Apple D.F. Jr., Staron R.S., Campos G.E., Dudley G.A.: Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J. Appl. Physiol. 1999, 86, 350-358.
  • [18] Grimby G., Broberg C., Krotkiewska I., Krotkiewski M.: Muscle fiber composition in patients with traumatic cord lesion. Scand. J. Rehabil. Med. 1976, 8, 37-42.
  • [19] Martin T.P., Stein R.B., Hoeppner PH., Reid D.C.: Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J. Appl. Physiol. 1992,72,1401-1406.
  • [20] Rochester L., Barron M.J., Chandler C.S., Sutton R.A., Miller S., Johnson M.A.: Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 1995, 33, 514-522.
  • [21] Cope T.C., Bodine S.C., Fournier M., Edgerton V.R.: Soleus motor units in chronic spinal transected cats: physiological and morphological alterations. J. Neurophysiol. 1986, 55, 1202-1220.
  • [22] Lieber R.L., Fridén J.O., Hargens A.R., Feringa E.R.: Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. II. Morphometric properties. Exp. Neurol. 1986, 91, 435-448.
  • [23] Round J.M., Barr F.M., Moffat B., Jones D.A.: Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic subjects. J. Neurol. Sci. 1993, 116, 207-211.
  • [24] Scelsi R., Marchetti C., Poggi P., Lotta S., Lommi G.: Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle. Acta Neuropathol. (Berl.) 1982, 57, 243-248.
  • [25] Pierotti D.J., Roy R.R., Bodine-Fowler S.C., Hodgson J.A., Edgerton V.R.: Mechanical and morphological properties of chronically inactive cat tibialis anterior motor units. J. Physiol. 1991,444, 175-192.
  • [26] Alaimo M.A., Smith J.L., Roy R.R., Edgerton V.R.: EMG activity of slow and fast ankle extensors following spinal cord transection. J. Appl. Physiol. 1984, 56, 1608-1613.
  • [27] Thomas C.K., Ross B.H.: Distinct patterns of motor unit behavior during muscle spasms in spinal cord injured subjects. J. Neurophysiol. 1997, 77, 2847-2850.
  • [28] Zijdewind I., Thomas C.K.: Spontaneous motor unit behavior in human thenar muscles after spinal cord injury. Muscle Nerve 2001, 24, 952-962.
  • [29] Goldspink D.F.: The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J. Physiol. 1977, 264, 267-282.
  • [30] Roy R.R., Baldwin K.M., Edgerton V.R.: The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc. Sport. Sci. Rev. 1991, 19, 269-312.
  • [31] Brandstater M.E., Dinsdale S.M.: Electrophysiological studies in the assessment of spinal cord lesions. Arch. Phys. Med. Rehabil. 1976, 57, 70-74.
  • [32] Bryden A.M., Kilgore K.L., Lind B.B., Yu D.T.: Triceps denervation as a predictor of elbow flexion contractures in C5 and C6 tetraplegia. Arch. Phys. Med. Rehabil. 2004, 85, 1880-1885.
  • [33] Mulcahey M.J., Smith B.T., Betz R.R.: Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord 1999, 37, 585-591.
  • [34] Nyboer V.J., Johnson H.E.: Electromyographic findings in lower extremities of patients with traumatic quadriplegia. Arch. Phys. Med. Rehabil. 1971, 52, 256-259.
  • [35] Peckham P.H., Mortimer J.T., Marsolais E.B.: Upper and lower motor neuron lesions in the upper extremity muscles of tetraplegics. Paraplegia 1976, 14, 115-121.
  • [36] Rosen J.S., Lerner I.M., Rosenthal A.M.: Electromyography in spinal cord injury. Arch. Phys. Med. Rehabil. 1969, 50, 271-273.
  • [37] Taylor R.G., Kewalramani L.S., Fowler W.M. Jr.: Electromyographic findings in lower extremities of patients with high spinal cord injury. Arch. Phys. Med. Rehabil. 1974, 55, 16-23.
  • [38] Thomas C.K., Nelson G„ Than L., Zijdewind I.: Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles. Muscle Nerve 2002, 25, 797-804.
  • [39] Yang J.F., Stein R.B., Jhamandas J., Gordon T.: Motor unit numbers and contractile properties after spinal cord injury. Ann. Neurol. 1990, 28, 496-502.
  • [40] Hunter J., Ashby P.: Secondary changes in segmental neurons below a spinal cord lesion in man. Arch. Phys. Med. Rehabil. 1984, 65, 702-705.
  • [41] Marino R.J., Herbison G.J., Ditunno J.F. Jr.: Peripheral sprouting as a mechanism for recovery in the zone of injury in acute quadriplegia: a single-fiber EMG study. Muscle Nerve 1994, 17, 1466- 1468.
  • [42] Thomas C.K., Broton J.G., Calancie B.: Motor unit forces and recruitment patterns after cervical spinal cord injury. Muscle Nerve 1997, 20, 212-220.
  • [43] Erb D.E., Mora R.J., Bunge R.P.: Reinnervation of adult rat gastrocnemius muscle by embryonic motoneurons transplanted into the axotomized tibial nerve. Exp. Neurol. 1993, 124, 372-376.
  • [44] Thomas C.K., Erb D.E., Grumbles R.M., Bunge R.P.: Embryonic cord transplants in peripheral nerve restore skeletal muscle function. J. Neurophysiol. 2000, 84, 591-595.
  • [45] Gardiner P.F.: Physiological properties of motoneurons innervating different muscle unit types in rat gastrocnemius. J. Neurophysiol. 1993, 69, 1160-1170.
  • [46] Thomas C.K., Sesodia S., Erb D.E., Grumbles R.M.: Properties of medial gastrocnemius motor units and muscle fibers reinnervated by embryonic ventral spinal cord cells. Exp. Neurol. 2003, 180, 25-31.
  • [47] Grumbles R.M., Wood P., Rudinsky M., Gomez A.M., Thomas C.K.: Muscle reinnervation with delayed or immediate transplant of embryonic ventral spinal cord cells into adult rat peripheral nerve. Cell Transplant 2002, 11, 241-250.
  • [48] Boyd J.G., Gordon T.: Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol. 2003, 27, 277-324.
  • [49] Mulcahey M.J., Lutz C., Kozin S.H., Betz R.R.: Prospective evaluation of biceps to triceps and deltoid to triceps for elbow extension in tetraplegia. J. Hand. Surg. [Am.] 2003, 28, 964-971.
  • [50] Sieradzan K, Vrbová G.: Replacement of missing motoneurons by embryonic grafts in the rat spinal cord. Neuroscience 1989, 31, 115-130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0008-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.