Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fourth order nonlinear evolution equations, which are a good starting point for the study of nonlinear water waves as first pointed out by Dysthe (1979) and later elaborated by Janssen (1983), are derived for deep water capillary-gravity waves in the presence of air flowing over water. Stability analysis is then made for a uniform Stokes capillary gravity wave train. Graphs are plotted for the maximum growth rate of instability, the frequency at marginal stability and the frequency separation for fastest growing side-band component as a function of wave steepness. Significant deviations are noticed from the results obtained from the third-order evolution equation, which is the nonlinear Schrödinger equation.
Rocznik
Tom
Strony
433--442
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
autor
- Department of Mathematics Bengal Engineering and Science University Shibpur, P.O. Botanic Garden, Shibpur Howrah - 711103, West Bengal, INDIA, asoke.dhar@gmail.com
Bibliografia
- Benjamin T.B. and Feir J.E. (1967): The disintegration of wave trains on deep water, I. Theory. - J. Fluid Mech. vol.27, pp.417-430.
- Das K.P. (1986): On evolution equations for a three dimensional surface gravity wave packet in a two layer fluid. - Wave Motion, vol.8, pp.191-204.
- Davey A. and Stewartson K. (1974): On three dimensional packets of surface waves. - Proc. R. Soc. Lond., vol.-A338, pp.101-110.
- Dhar A.K. and Das K.P. (1994): Stability analysis from fourth order evolution equation for small but finite amplitude interfacial waves in the presence of a basic current shear. - J. Austral. Math. Soc. vol. ser. B 35, pp.348-365.
- Dhar A.K. and Das K.P. (1999): A fourth order evolution equation for capillary gravity waves including the effects of wind input and shear in the water current. - Int. J. of Applied Mechanics and Engineering, vol.4, No.1, pp.5-24.
- Dhar A.K. and Das K.P. (2001): The effect of randomness on stability of surface gravity waves from fourth order nonlinear evolution equation. - Int. J. of Applied Mechanics and Engineering, vol.6, No.1, pp.11-34.
- Djordjevic V.D. and Redekopp L.G. (1977): On two dimensional packets of capillary gravity waves. - J. Fluid Mech. vol.79, pp.703-714.
- Dysthe K.B. (1979): Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. - Proc. R. Soc. Lond., vol.A 369, pp.105-114.
- Hogan S.J. (1985): The fourth order evolution equation for deep water gravity capillary waves. - Proc. R. Soc. Lond., vol.A 402, pp.359-372.
- Janssen P.A.E.M. (1983): On fourth order evolution equation for deep water waves. - J. Fluid Mech., vol.126, pp.1-11.
- Longuet-Higgins M.S. (1978a): The instabilities of gravity waves of finite amplitude in deep water, I. Super Harmonics. - Proc. R. Soc. Lond., vol.A 360, pp.471-488.
- Longuet-Higgins M.S. (1978b): The instabilities of gravity waves of finite amplitude in deep water, II. Sub Harmonics. - Proc. R. Soc. Lond., vol.A 360, pp.489-506.
- Stiassnie M. (1984): Note on the modified nonlinear Schrödinger equation for deep water waves. - Wave Motion, vol.6, pp.431-433.
- Zakharov V.E. (1968): Stability of periodic waves of finite amplitude on the surface of a deep fluid. - J. Appl. Mech. Tech. Phys., vol.2, pp.190-194.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0041-0009