PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A unified generalized thermoelasticity formulation: application to an infinite body with a cylindrical cavity and variable material properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the determination of thermoelastic displacement, stress, and temperature produced in an infinite isotropic elastic body having a cylindrical cavity where the elastic parameters and the thermal conductivity are temperature dependent. The boundary of the cavity is subjected to time dependent thermal and mechanical shocks. The generalized coupled thermoelasticity theories for the problem are combined into a unified formulation introducing the unified parameters. The governing equations of the generalized thermoelasticity theory are obtained in the Laplace transform domain and are solved in that domain by finding out the roots by using Laguerre's method. The inversion of the transform solution is carried out numerically by applying a method based on the Fourier series expansion technique. The computed results for displacement, temperature and stress are shown graphically for the Lord-Shulman (LS) model and for two models of Green-Naghdi (GN) and the effects of the temperature dependent parameters are discussed.
Rocznik
Strony
113--126
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
autor
autor
  • Department of Applied Mathematics University of Calcutta 92 A. P. C. Road, Kolkata - 700009, INDIA, sukla_banik@yahoo.co.in
Bibliografia
  • Ackerman C.C. and Guyer R.A. (1968): Temperature pulses in dielectric solids. - Annals of Physics, vol.50, pp.128-185.
  • Bandyopadhyay N. and Rowchoudhury S.K. (2005): Thermoelastic wave propagation without energy dissipation in an elastic half space. - Bull. Cal. Math. Soc., vol.97, No.6, pp.489-502.
  • Banik S., Mallik S.H. and Kanoria M. (2007): Thermoelastic interaction with energy dissipation in an infinite silid with distributed periodically varying heat sources. - International J. Pure and Applied Mathematics, vol.34, No.2, pp.231-245.
  • Chadwick P. (1960): Thermoelasticity, the dynamic theory. In: Progress in Solid Mechanics, vol.1 (Sneddon,I.,N.,Hill,R.,eds.). - pp.265. Amsterdam: North-Holland.
  • Chandrasekharaiah D.S. (1996a): A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. - J. Elasticity, vol.43, pp.279-283.
  • Chandrasekharaiah D.S. (1996b): A uniqueness theorem in theory of thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.19, pp.267-272.
  • El-Maghraby N.M. (2004): Two dimensional problem in generalized thermoelasticity with heat sources. - J. Thermal Stresses, vol.27, pp.227-239.
  • Ezzat M.A., Othman M.I. and El-Karamany (2001): The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity. - J. Thermal Stresses, vol.24, pp.1159-1176.
  • Green A.E. and Lindsay K.A. (1972): Thermoelasticity. - Journal of Elasticity, vol.2, pp.1-7.
  • Green A.E. and Naghdi P.M. (1992a): A re-examination of the basic results of thermomechanics. - Proc. Roy. Soc. London. Ser. A, vol.432, pp.171-194.
  • Green A.E. and Naghdi P.M. (1992b): On undamped heat waves in an elastic solid. - J. Thermal Stresses, vol.15, pp.252-264.
  • Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. - J. Elasticity, vol.31, pp.189-208.
  • Hetnarski R.B. and Ignaczac J. (1993): Generalized thermoelasticity: Closed form solutions. - J. Thermal Stresses, vol.16, pp.473-498.
  • Jackson H.E. and Walker C.T. (1971): Thermal conductivity, second sound, and phonon- phonon interactions in NaF. - Phys. Rev. B 3, pp.1428-1439.
  • Jackson H.E., Walker C.T. and McNelly T.F. (1970): Second sound in Na. - F. Phys. Rev. Lett., vol.25, pp.26-28.
  • Kar A. and Kanoria M. (2007a): Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole. - International J. Solids and Structures, vol.44, pp.2961-2971.
  • Kar A. and Kanoria M. (2007b): Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc. - European Journal of Mechanics A/Solids.
  • Lord H.W. and Shulman Y. (1967): A generalized dynamic theory of thermoelasticity. - J. Mech. Phys. Solids, vol.15, pp.299-309.
  • Mallik S.H. and Kanoria M. (2006): Effect on rotation on thermoelastic interaction with and without energy dissipation in an unbounded medium due to heat source-An eigen value approach. - Far East J. Appl. Math., vol.23, No.2, pp.147-167.
  • Mallik S.H. and Kanoria M. (2007): Two dimensional problem in generalized thermoelasticity for a rotating arthotropic infinite medium with heat sources. - Indian J. Mathematics, vol.49, No.1, pp.47-70.
  • Manson S.S. (1954): Behaviour of material under conditions of thermal stress. - NACA Report, pp.1170.
  • Narayanmurti V. and Dynes R.C. (1972): Observation of second sound in bismuth. - Phys. Rev. Lett, vol.28, pp.1461-1465.
  • Rogers S.J. (1971): Transport of heat and approach to second sound in some isotropically pure Alkali-Halide Crystals. - Phys. Rev. B3, pp.1440-1457.
  • Rowchoudhury S.K. and Dutta P.S. (2005): Thermoelastic interaction without energy dissipation in an infinite silid with distributed preiodically varying heat sources. - International J. Solids and Structures, vol.42, pp.4192-4203.
  • Shao Z.S., Wang T.J. and Ang K.K. (2007): Transient thermomechanical analysis of functionally graded hollow circular cylinders. - J. Thermal Stresses, vol.30, pp.81-104.
  • Youssef H.M. (2005a): Generalized thermoelasticity of an infinite body with cylindrical cavity and variable material properties. - Journal of Thermal Stresses, vol.28, pp.521-532.
  • Youssef H.M. (2005b): Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with spherical cavity. - J. Applied Mathematics and Mechanics vol.26, pp.470-475.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0040-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.