PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of steady laminar blood flow through arterial stenosis using computational fluid dynamics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flow of blood through a rigid artery with different degrees of stenosis has been studied. Two different shapes (rectangular and cosine) of stenosis are considered while blood is modeled either as a Newtonian or non-Newtonian fluid. Three different degrees of stenosis, expressed in percentage, are considered representing mild to severe stenoses. The flow separates from the arterial wall at the stenosis and reattaches at a point downstream, forming a recirculating eddy. The pressure drop over the length of the artery varies for the different cases indicating the impact on the heart. A peak in the wall shear stress is observed at the location of the stenosis and zero stress points are observed where the flow separates and reattaches the wall. Results show marked differences in the flow pattern and shear stress between Newtonian and non-Newtonian models. Moreover, the power-law model exhibits a different trend as compared to the Casson model in predicting the flow field and wall shear stress.
Rocznik
Strony
91--111
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Department of Power Engineering Jadavpur University Salt Lake Campus Kol.-98, INDIA
Bibliografia
  • Ang K.C. and Mazumdar J.N. (1997): Mathematical modelling of three-dimensional flow through an asymmetric arterial stenosis. - Mathl. Comput. Modelling, vol.25, pp.19-29.
  • Buchanan J.R., Kleinstreuer C. and Comer J.K. (2000): Rheological effects on pulsatile hemodynamics in a stenosed tube. - Computers and Fluids, vol.29, pp.695-724.
  • Casson N.A. (1959): A flow equation for pigment-oil suspensions of the printing ink type. - Rheology of Disperse Systems, New York: C.C. Mills (Ed.). Pergamon Press, pp.84-102.
  • Deplano V. and Siouffi M. (1999): Experimental and numerical study of pulsatile flows through stenosis-wall shear stress analysis. - J. Biomechanics, vol.32, pp.1081-1090.
  • Hirt C.W. and Cook J.L. (1972): Calculating three-dimensional flows around structures and over rough terrain. - Journal of Comput. Physics., vol.10, pp.324-341.
  • Nataf F. (1989): An open boundary condition for the computation of the steady incompressible Navier-Stokes equations. - J. Comput. Physics, vol.85, No.1, pp. 104-129.
  • Neofytou P. and Drikakis D. (2003): Effects of blood models on flows through a stenosis. - International Journal for Numerical Methods in Fluids, vol.43, pp.597-635.
  • Pontrelli G. (2001): Blood flow through an axisymmetric stenosis. - Proc. Instn. Mech. Engrs. PartH - J. of Engineering in Medicine, vol.215, pp.1-10.
  • Papanastasiou T.C. (1987): Flow of materials with yield. - Journal of Rheology, vol.31, pp.385-404.
  • Patankar S.V. (1980): Numerical Heat Transfer and Fluid Flow. - Hemisphere Publication.
  • Tu C. and Deville M. (1996): Pulsatile flow of non-Newtonian fluids through arterial stenoses. - Journal of Biomechanics, vol.29, No.7, pp.899-908.
  • Tu C., Deville M., Dheur L. and Vanderschuren L. (1992): Finite element simulation of pulsatile flow through arterial stenosis. - Journal of Biomechanics, vol.25, No.10, pp.1141-1152.
  • Walburn F.J. and Schneck D.J. (1976): A constitutive equation for whole human blood. - Biorheology, vol.13, pp.201-210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0040-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.