PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The evolution of three-dimensional perturbations in a magnetohydrodynamic couette flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The evolution of three-dimensional disturbances in a magnetohydrodynamic Couette flow is investigated using the initial-value problem approach. The general solution to the linearized equations governing three-dimensional disturbances is obtained by using two-dimensional Fourier transformation and other transformations rather than the traditional normal mode approach. The governing stability equation is solved using both the Fourier method and perturbation method. In the Fourier approach, the stability equation is reduced to Mathieu's equation and a periodic solution is obtained. Perturbation solution is obtained for small values of Alfvén velocity. Here Green's function method is employed to obtain the time evolution of linearized disturbances. A measure of disturbance energy is obtained in the case of square wave pulse for velocity and the magnetic field. The time evolution of the three-dimensional disturbances is obtained in terms of the two Green's function representations, one in the form of a Fourier sine series and the other in the form of sine hyperbolic functions representing the energy of a single component and the total energy of a single component. It is shown graphically that the total energy and the sum of first five components of energy are similar but are of different magnitudes.
Rocznik
Strony
627--638
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
  • Department of Mathematics, Bangalore University Central College Bangalore - 560 001 Karnataka, INDIA, drp_mb@yahoo.com
Bibliografia
  • Criminale W.O., Bruce Long and Mei Zhu (1991): General three - dimensional disturbances to inviscid Couette flow. - Stud. App. Math., vol.85, pp.249-267.
  • Drazin P.G. and Reid W.H. (1981): Hydrodynamic Stability. - Cambridge University Press.
  • Hughes D.W. and Tobias S.M. (2001): On the instability of magnetohydrodynamic shear flows. - Proceedings: Mathematical, Physical and Engineering Sciences, vol.457, No.2010, pp.1365-1384.
  • Hunt J.C.R. (1966): On the stability of parallel flows with parallel magnetic field. - Proc. R. Soc. Lond. A, vol.293, pp.342 - 358.
  • Lerner J. and Knobloch E. (1985): The stability of dissipative magnetohydro-dynamic shear flow in a parallel magnetic field. - Geophysics and Astrophysics, Fluid Dynamic, vol.33, pp.295-314.
  • Lin C.C. (1955): The theory of Hydrodynamic stability. - Cambridge University Press.
  • Lucas R.J. (1981): The stability of magnetohydrodynamic shear flows with transverse magnetic field. - Acta Mechanica, vol.39, No.1-2, pp.65-76.
  • Michael D.H. (1953): The stability of plane parallel flows of electrically conducting fluids. - Proc. Camb. Phil. Soc., vol.49, pp.166.
  • Miura A and Pritchett P.L. (1982): Nonlocal stability analysis of MHD Kelvin Helmholtz instability in a compressible plasma. - J. Geophys. Res., vol.87, No.A9, pp.7431-7444.
  • Orr W.M'F. (1907a): The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. - Proc. Roy. Irish Acad. Part I., vol.27, pp.9-68.
  • Orr W.M'F. (1907b): The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. - Proc. Roy. Irish Acad. Part II, vol.27, pp.69-138.
  • Pringle J. (1981): Accretion discs in Astrophysics. - Ann. Rev. Astron and Astrophys, vol.19, pp.137-162.
  • Schindler K. and Birn J. (1978): Magnetospheric Physics. - Physics Reports, vol.47, pp.109.
  • Stuart J.T. (1954): On the stability of viscous flow between parallel planes in the presence of co - planar magnetic field. - Proc. R. Soc. Lond. A 221, pp.189-206.
  • Van Kampen N.G. and Felderhof B.U. (1957): Theoretical Methods in Plasma Physics . - North-Holland Publ. Co.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0037-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.