PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element solutions for two-phase magneto-heat transfer in a particle-suspension through a non-Darcian porous channel with heat source and buoyancy effects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the steady, laminar natural convection heat transfer of a particulate suspension in an electrically-conducting fluid through a two-dimensional channel containing a non-Darcian porous material in the presence of a transverse magnetic field. The transport equations for both fluid and particle phases are formulated using a two-phase continuum model and a heat source term is included which simulates either absorption or generation. A set of transformations are implemented to reduce the partial differential equations for momentum and energy conservation (for both phases) from a two-dimensional coordinate system to a one-dimensional system. Finite element solutions are obtained for the transformed model. A comprehensive parametric study of the effects of the heat source parameter (E), Prandtl number (Pr), Grashof number (Gr), momentum inverse Stokes number (Skm), Darcy number (Da), Forchheimer number (Fs), particle loading parameter (PL), buoyancy parameter (B), Hartmann number (Ha), temperature inverse Stokes number (SkT), viscosity ratio [...], specific heat ratio [...], dimensionless particle-phase wall slip parameter [...] on the dimensionless fluid phase velocity (U), dimensionless particle phase velocity ( ), dimensionless fluid phase temperature [...] and the dimensionless temperature of particle phase [...] are presented graphically. In addition, we also describe numerical solutions for several special cases of the model, for example, the inviscid hydromagnetic two phase non-Darcian free convection, heat transfer [...], forced convection case (GrŽ0) etc. Fluid phase velocities are found to be strongly reduced by the magnetic field, Darcian drag and also Forchheimer drag; a lesser reduction is observed for the particle phase velocity field. The Prandtl number is shown to depress both the fluid temperature and particle phase temperature in the left hand side of the channel but to boost both temperatures at the right hand side of the channel [...]. The inverse momentum Stokes number is seen to reduce fluid phase velocities and increase particle phase velocities. The influence of other thermophysical parameters is discussed in detail and computations compared with previous studies. The model finds applications in MHD plasma accelerators, astrophysical flows, geophysics, geothermics and industrial materials processing.
Rocznik
Strony
325--357
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Applied Mathematics, Mathematics Department Indian Institute of Technology Roorkee-247667, INDIA, rbharfma@iitr.ernet.in
Bibliografia
  • Al-Subaie M. and Chamkha A.J. (2003): Analytical solutions for hydromagnetic natural convection flow of a particulate suspension through a channel with heat generation or absorption effects. - Heat and Mass Transfer J., vol.39, pp.701-707.
  • Apazidis N. (1988): Gas particulate flow in a deep vertical cavity due to thermal convection and phase separation. - Int. J. Multi-Phase Flow, vol.14, pp.607-631.
  • Apazidis N. (1990): Temperature distribution and heat transfer in a particulate fluid flow past a heated horizontal plate. - Int. J. Multi-Phase Flow, vol.16, pp.495-513.
  • Balakrishnan A.R. and Pei D.C.T. (1978): Convective heat transfer in gas-solid suspension flow through packed beds. - AIChemE J., vol.24, No.4, pp.613-619.
  • Bathe K.J. (1996): Finite Element Procedures. - USA: Prentice-Hall.
  • Bhargava R., Takhar H.S., Bég T.A., Rawat S. and Bég O.A. (2006): Numerical study of two-phase hydromagnetic heat transfer in a particle-suspension through a non-Darcian Porous Channel. - Non-Linear Analysis: Modeling and Control, August, submitted.
  • Chamkha A.J. (2000): Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. - Int. J. Heat Fluid Flow, vol.21, pp.740-746.
  • Chamkha A.J. (2000): Effects of heat absorption and thermal radiation on heat transfer in a fluid-particle flow past a surface in the presence of a gravity field. - Int. J. Thermal Sciences, vol.39, pp.605-615.
  • Chamkha A.J. and Adeeb J.A. (1999): Oscillatory natural convection flow of a two-phase suspension over a surface in the presence of magnetic field and heat generation effects. - Int. J. Fluid Mechanics Research, vol.26, pp.643-659.
  • Chamkha A.J. and Quadri M.A. (2002): Combined heat and mass transfer by hydromagnetic natural convection over a cone embedded in a non-Darcian porous medium with heat generation/absorption effects. - Heat and Mass Transfer, vol.38, pp.487-495.
  • Chamkha A.J. and Ramadan H. (1998): Analytical solutions for the two-phase free convection flow of a particulate suspension past an infinite vertical plate. - Int. J. Engineering Science, vol.36, pp.49-60.
  • Depew C.A. and Cramer E.R. (1970): Heat transfer to horizontal gas-solid suspension flows. - ASME J. Heat Transfer, vol.92, pp.77-82.
  • Drew D.A. (1983): Mathematical modeling of two-phase flow. - Annual Review Fluid Mechanics, vol.15, pp.261-291.
  • Himasekhar K. and Bau H.H. (1988): Thermal convection around a heat source embedded in a box containing a saturated porous medium. - ASME J. Heat Transfer, vol.110, pp.649-654.
  • Incropera F.P. and Dewitt D.P. (1990): Fundamentals of Heat and Mass Transfer. - 3rd edition, New York: John Wiley.
  • Ingham D.B. and Pop I. (2001): Convection Heat Tranfer; Mathematical and Computational Modeling of Viscous Fluids and Porous Media. - Pergamon Press, UK.
  • Lohrasbi J. (1980): Investigation of magnetohydrodynamic heat transfer in two phase flow. - PhD Thesis, Tennessee Technological University , Cookesville, TS, USA.
  • Marble F.E. (1970): Dynamics of dusty gases. - Annual Review Fluid Mechanics, vol.2, pp.397- 446.
  • Michaelides E.E. (1986): Heat transfer in particulate flows. - Int. J. Heat Mass Transfer, vol.29, pp.256.
  • Mwangi J.M., Rizwi S.S.H. and Datta A.K. (1993): Heat transfer to particles in shear flow: application to aseptic processing. - J. Food Engineering, vol.19, No.1, pp.55-74.
  • Narasimhan S. and Majdalani J. (2002): Characterization of compact heat sink models in natural convection. - IEEE Trans. Components Packing Technologies, vol.25, No.1.
  • Pechenegov Y.Y. and Kashirskiy V.G. (1975): Heat transfer to an air suspension of solids flowing in a horizontal pipe. - Heat Transfer-Soviet Research, vol.7-4, pp.113-118.
  • Pop I., Takhar H.S. and Soundalgekar V.M. (1982): Combined convection heat transfer from an isothermal cylinder with internal sinks or sources. - Revue Romanie, Mecanique Appliquee, vol.27, pp.214-218.
  • Raiskinmaki P. (2004): Dynamics of multiphase flows: liquid particle suspensions and droplet spreading. - University of Jyvaskyla, Physics Department, Finland, Report, 152 pages.
  • Reddy J.N. (1985): An Introduction to the Finite Element Method. - New York: MacGraw-Hill.
  • Santos A. and Bedrikovetsky P. (2004): Size exclusion during particle suspension transport in porous media: stochastic and averaged equations. - Computational and Applied Mathematics, vol.23, No.2-3, pp.259-284.
  • Schlichting H. (1979): Boundary-Layer Theory. - New York: MacGraw-Hill, 7th edition.
  • Shakib-Manesh A., Raiskinmaki P., Koponen A., Kataja M. and Timonen J. (2002): Shear stress in a Couette flow of liquid-particle suspensions. - J. Statistical Physics, vol.107, No.1-2, pp.67-84.
  • Singh A.K. (2001): MHD free convection and mass transfer flow with heat source and thermal diffusion. - J. Energy Heat and Mass Transfer, vol.23, pp.227-249.
  • Song S.P., Dailey P. and Li B.Q. (2000): Effects of heat source arrangements on Marangoni convection in electrostatically-levitated droplets. - AIAA J. Thermophysics and Heat Transfer, vol.14, No.3, pp.355-362.
  • Srivastava V.P. and Srivastava L.M. (2005): Effects of Poiseuille flow on peristaltic transport of a particulate suspension. - ZAMP, vol.46, No.5, pp.655-679.
  • Sukomel A.S., Kerimov R.V. and Tsvetkov F.F. (1972): Local heat transfer and hydraulic resistance during the flow of dust-containing air in pipes of various diameters. - Heat Transfer-Soviet Research, vol.4, pp.157-162.
  • Takhar H.S. and Ram P.C. (1991): Free convection in hydromagnetic flows of a viscous heat-generating fluid with wall temperature oscillation and Hall currents. - Astrophysics and Space Science, vol.183, pp.193-198.
  • Takhar H.S., Ram P.C., Garba E.J.D. and Bitok J.K. (1995): Hydromagnetic convective flow of heat generating fluid past a vertical plate with Hall currents and constant heat flux through a porous medium. - Magnetohydrodynamics and Plasma Research J., vol.5, pp.185-195.
  • Tien C.L. (1961): Heat transfer by a turbulently flowing fluid-solid mixture in a pipe. - ASME J. Heat Transfer, vol.83, pp.183-188.
  • Tiwari P., Antal S.P. and Podowski M.Z. (2006): Three-dimensional fluid mechanics of particulate two-phase flows in U-bend and helical conduits. - Physics of Fluids, vol.18, 043304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0036-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.