PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automotive component development by means of hydroforming: a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykorzystanie kształtowania hydromechanicznego do rozwoju części samochodowych: przegląd
Języki publikacji
EN
Abstrakty
EN
Hydroforming processes have become popular in recent years, due to the increasing demands for lightweight parts in various fields, such as bicycle, automotive, aircraft and aerospace industries. This technology is relatively new as compared with rolling, forging or stamping, therefore there is not much knowledge available for the product or process designers. Comparing to conventional manufacturing via stamping and welding, tube (THF) and sheet (SHF) hydroforming offers several advantages, such as de crease in workpiece cost, tool cost and product weight, improvement of structural stability and increase of the strength and stiffness of the formed parts, more uniform thickness distribution, fewer secondary operations, etc. The paper presents extensive possibilities of component development in automotive industry by means of hydroforming processes. There are also presented some examples on computer modelling of these processes and limiting phenomena.
PL
Kształtowanie hydromechaniczne zaczęto coraz częściej stosować w ostatnich latach w związku z rosnącymi potrzebami obniżenia wagi różnych wyrobów w przemyśle lotniczym, kosmicznym i motoryzacyjnym. Jest to stosunkowo młoda technologia w porównaniu z walcowaniem, kuciem, czy tłoczeniem i stąd stosunkowo mało jest dostępnych danych niezbędnych do projektowania wyrobów i procesów. W porównaniu z klasycznymi procesami tłoczenia i spawania, kształtowanie hydromechaniczne rur (THF) i blach (SHF) przynosi wiele korzyści: zmniejszenie kosztu wyrobu, kosztu narzędzi, wagi wyrobu, poprawę stabilności konstrukcji, zwiększenie wytrzymałości i sztywności wyrobu, bardziej równomierny rozkład grubości, zmniejszenie ilości operacji dodatkowych, itd. W referacie zaprezentowano rozległe możliwości rozwoju produkcji wyrobów poprzez zastosowanie procesów kształtowania hydromechanicznego, ze szczególnym uwzględnieniem wyrobów dla przemysłu motoryzacyjnego. Podano także uwagi na temat komputerowego modelowania tych procesów i zjawisk ograniczających.
Rocznik
Strony
55--72
Opis fizyczny
Bibliogr. 76 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, ul. Narbutta 85, 02-524 Warszawa, Poland
Bibliografia
  • [1] Chałupczak J.: Application of hydroforming for making T-joints and X-joints (in Polish), Scientific Papers of Technical University of Kielce, Mechanics, 41, 1988.
  • [2] Ahmetoglu M., Sutter K., Li X.J., Altan T.: Tube hydroforming: current research, Journal of Materials and Technology, 98, 2000, pp. 224-231.
  • [3] Kleiner M. et al.: New 100.000 kN press for sheet metal hydroforming, Proceedings of the International Conference on Hydroforming, Stuttgart, Germany, 6th/7th November, 2001, pp. 351-362.
  • [4] Geiger M.: Neue Entwicklungen beim IHU von Blechen und deren Einsatzpotenziale f¨ur Leichtbauteile, Proceedings of the Third Chemnitz Car Body Colloquium, Chemnitz, Germany, 25th/26th September, 2002, pp. 225-241.
  • [5] Novotny S., Hein P.: Hydroforming of sheet metal pairs from aluminum alloys, Proceedings of the SheMet'99, 9th September, 1999, pp. 591-598.
  • [6] Novotny S., Geiger M.: Process design for hydroforming of light weight metal sheets at elevated temperatures, Journal of Material Process and Technology, 138, 2003, pp. 594-599.
  • [7] Altan T.: Formability and Design Issues in Tube Hydroforming, Proceedings of the International Conference on Hydroforming, Stuttgart, Germany, 12th/13th October, 1999, pp. 135-151.
  • [8] Dohmann F., Hartl Ch.: Hydroforming - a method to manufacture light-weight-parts, Journal of Material Process and Technology, 60, 1996, pp. 669-676.
  • [9] Hartl Ch., Bauer H., Haas A.: Optimierungserfolge durch Simulation in der Innenhochdruck-umformung, EFB-Kolloquium Wirtschaftliche Blechumformung durch Simulation, Fellbach b. Stuttgart, Germany, March, 1999, pp. 9-10.
  • [10] Vollesten F. Sprenger A., Krauss J.: Extrusion, channel, and profile bending: a review, Journal of Materials and Technology, 87, 1990, pp. 1-27.
  • [11] Kelder M., Edgar K.: Hydroforming dual-phase steel, The Tube & Pipe Journal 7th December, 2004, pp. 53-57.
  • [12] Maki T., Walter C.: Liquid curves - Sheet hydroforming helps the sporty Solstice stand out, Stamping Journal, 8th May, 2007, pp. 32-37.
  • [13] Zhang S.H., Danckert J: Development of hydro-mechanical deep drawing, Journal of Materials Processing Technology, 83, 1998, pp.14-25.
  • [14] http://www.carpimoto.com/content/prod/l_EN/s_1_Home/pr_16884_Akrapovic_Complete Racing Hydroforming Exhaust System Kawasaki ZX 10R 04 05 full titanium Oval muffler with titanium sleeve.htm.
  • [15] Paulsen F., Welo T., Sovik O.P.: A design method for rectangular hollow section in bending, Journal of Materials and Technology, 113, 2001, pp. 699-705.
  • [16] Yang J.B., Jeon B.H., Oh S.I.: Design sensitivity analysis and optimization of the hydroforming process, Journal of Materials and Technology, 113, 2001, pp. 666-672.
  • [17] Asnafi N., Nilsson T., Lassl G.: Tubular hydroforming of automotive side members with extruded aluminum profiles, Journal of Materials Processes Technology, 142, 2003, pp. 93-142.
  • [18] Carpenter J.A.: The Freedom CAR Challenge and Steel, American Iron and Steel Institute, Great Designs in Steel Seminar, Livonia, MI, 2004, pp. 96-111.
  • [19] Schultz R.A.: Aluminum for light vehicles - an objective look at the next ten to twenty years, in: 14th Int'l Aluminum Conference, Montreal, Canada (Ducker Research), 15th September, 1999, pp. 243-250.
  • [20] Mildenberger U., Khare A.: Planning for an environment-friendly car, Technovation, 20, 2000, pp. 205-214.
  • [21] Choi Y., Yeo H.T., Park J.H., Oh G.H., Park S.W.: A study on press forming of automotive sub-frame parts using extruded aluminum profile, Journal of Materials Processing Technology, 187-188, 2007, pp. 85-88.
  • [22] Godwin J.: Materials World, Hydroforming Techniques, Vol. 6, No. 8, 1998, pp. 483-84.
  • [23] Hartl Ch.: Research and advances in fundamentals and industrial applications of hydroforming, Journal of Materials Processing Technology, 167, 2005, pp. 383-392.
  • [24] USS - materials available in http://ussautomotive.com/auto/steelvsal/alintensive.htm.
  • [25] Vollertsen F., Prange T., Sander M.: Hydroforming: needs, developments and perspectives, Proceedings of the Sixth International Conference on Technology Plasticity, Advanced Technology of Plasticity, Vol. 6, Berlin, Germany, 1999, pp. 1197-1210.
  • [26] Kleiner M., Gartzke A., Kolleck R., Ramer J., Weidner T.: Finite element simulation for high pressure sheet metal forming (HBU process) and tool construction, Adv. Technol. Plast. 2, 1996, pp. 975-983.
  • [27] Li D., Ghosh A.: Tensile deformation behavior of aluminum alloys at warm forming temperatures, Mater. Sci. Eng. A, 352, 1-2, 2003, pp. 279-286.
  • [28] Naka T., Torikai G., R. Hino, F. Yoshida: The effects of temperature and forming speed on the FLD for type5083 Al-Mg alloy sheet, Journal of Materials and Technology, 113, 2001, pp. 648-653.
  • [29] Kim H.S., Koc M., Ni J.: Determination of app.ropriate temperature distribution for warm forming of aluminum alloys, Trans. NAMRC 32, 2004, pp. 573-580.
  • [30] Zhongqi Yu, Zhongqin Lin, Yixi Zhao: Evaluation of fracture limit in automotive aluminum alloy sheet forming, Materials and Design, 28, 2007, pp. 203-207.
  • [31] Vahl M., Hein P., Bobbert S.: Hydroforming of sheet metal pairs for the production of hollow bodies, 2000, available on http://www.edpsciences.org/articles/metal/pdf/ (2000)/ 10/ p1255.pdf.
  • [32] Vollrath K.: Hydroforming gains ground in German, 2002, available on http://www.the fabricator.com/Hydroforming/Hydroforming Article.cfm?ID=106.
  • [33] Grey J.E., Devereaux A.P., Parker W.N.: Apparatus for making wrought metal T's, US Patent 2, 203, 1939, pp. 868.
  • [34] Constantine B., Roth R., Clark J.P.: Substituting tube-hydroformed parts for automotive stamping: an economic model, J. Mat., 53, 8, 2001, pp. 33-38.
  • [35] Zimniak Z., Piela A.: Finite element analysis of a tailored blanks stamping process, Journal of Materials Processing Technology, 106, 2001, pp. 254-260.
  • [36] Kuvin B.F.: Hydroformer evolves into complete source for prototype and short-run sheet, Metalforming, 12, 2002, pp. 26-29.
  • [37] Luecke H.-U., Hartl Ch., Abbey T.: Hydroforming, Proceedings of the International Conference on Sheet Metal, Erlangen Nuremberg, Germany, 27th/28th, September, 1999, pp. 607-614.
  • [38] Leitermann W. et al.: Innovative Forming Technologies for Space Frames, Proceedings of the International Conference on Advanced Technology of Plasticity, Nuremberg, Germany, 19-24 September, 1999, pp. 1183-1188.
  • [39] Flehmig T., Schwarz S.: Hydroforming complex hollow sections, Steel Grips 1, 6, 2003, pp. 408-412.
  • [40] Kroef et al.: Untersuchungen von Stahl und Bestimmung von Umformcharakteristiken fur hydraulische Umformprozesse, Proceedings of the Third Chemnitz Car Body Colloquium, Chemnitz, Germany, September 25/26, 2002, pp. 69-80.
  • [41] http://nsm.eng.ohio-state.edu/THFModule1/html/app.lications.html.
  • [42] http://www.salzgitterhydroforming.de/westsachsen/crimmitschau/salzgitter/de/produkte / abgaskomponenten/bsp kruemmer/.
  • [43] Williams B.W., Oliveira D.A., Simha C.H.M., Worswick M.J., Mayer R.: Crashworthiness of straight section hydroformed aluminum tubes, International Journal of Impact Engineering, 2007, pp. 1451-1464.
  • [44] Oyama M., Masuta N.: Automotive bumper stay structure, US Patent 5441319, 1995.
  • [45] Kariatsumari K., Kobe: Car body energy absorber and bumper stay, US Patent 6481690 B2, 2002.
  • [46] Sohn S.M., Kim B.J., Park K.S., Moon Y.H.: Evaluation of the crash energy absorption of hydroformed bumper stays, Journal of Materials Processing Technology, 187-188, 2007, pp. 283-286.
  • [47] Rimkus W., Bauer H., Mihsein M.J.A.: Design of load-curves for hydroforming app.lications, Journal of Materials Processing Technology, 108, 1, 2000, pp. 97-105.
  • [48] Fann K.-J., Hsiao P.-Y.: Optimization of loading conditions for tube hydroforming, Journal of Materials Processing Technology, 140, 1-3, 2003, pp. 520-524.
  • [49] Aue-U-Lan Y., Ngaile G., Altan T.: Optimizing tube hydroforming using process simulation and experimental verification, Journal of Materials Processing Technology, 146, 1, 2004, pp. 137-143.
  • [50] Imaninejad M., Subhash G., Loukus A.: Loading path optimization of tube hydroforming process, International Journal of Machine Tools and Manufacture, 45, 12-13, 2005, pp. 1504-1514.
  • [51] Yogo T., Ito M., Mizuno T.: Digital master system of hammering hydroforming, (in Japanese), Journal of the Japan Society for Technology of Plasticity, 45, 527, 2004, pp. 1022-1025.
  • [52] Mori K., Patwari A.U., Maki S.: Improvement of formability by oscillation of internal pressure in pulsating hydroforming of tube, Annals of the CIRP 53, 1, 2004, pp. 215-218.
  • [53] Mori K., Maeno T., Maki S.: Mechanism of improvement of formability in pulsating hydroforming of tubes, International Journal of Machine Tools & Manufacture, 47, 2007, pp. 978-984.
  • [54] Manabe K., Amino M.: Effects of process parameters and material properties on deformation process in tube hydroforming, Journal of Materials Processing Technology, 123, 2, 2002, pp. 285-291.
  • [55] Murakawa M., Jin M.: The utility of radially and ultrasonically vibrated dies in the wire drawing process, Journal of Materials Processing Technology, 113, 1-3, 2001, pp. 81-86.
  • [56] Mori K., Maeno T., Bakhshi-Jooybari M., Maki S.: Measurement of friction force in free bulging pulsating hydroforming of tubes, in: P.F. Bariani et al. (Ed.), Advanced Technology of Plasticity, Edizioni Progetto Padova, Padova, 2005, pp. 192-200.
  • [57] Kang H., Lee M. Y., Shon S. M., Moon Y. H.: Forming various shapes of tubular bellows using a single-step hydroforming process, Journal of Materials Processing Technology, 194, 2007, pp. 1-6.
  • [58] Erbel S., Kuczyński K.: Metalforming of bellows part 1 (in Polish), Mechanik, Vol. 4, 1962, pp. 180-183.
  • [59] Erbel S., Kuczyński K.: Metalforming of bellows part 2 (in Polish), Mechanik Vol. 5, 1962, pp. 281-285.
  • [60] Morphy G.: Tube Hydroforming Design Flexibility-Part VII: Holes, Exclusive to The Fabricator.com, February, 2005, available on http://www.thefabricator.com/ Hydroforming/ Hydroforming_Article.cfm?ID=1047.
  • [61] Hama T., Ohkubo T., Kurisu K., Fujimoto H., Takuda H.: Formability of tube hydroforming under various loading paths, Journal of Materials Processing Technology, 177, 2006, pp. 676-679.
  • [6 2] Jirathearanat S., Hartl Ch., Altan T.: Hydroforming Y-shapes - product and process design using FEA simulation and experiments, Journal of Materials and Technology, 146, 2004, pp. 124-129.
  • [63] Kim T.J., Yang D.Y., Han S.S.: Numerical modelling of the multi-stage sheet pair hydroforming process, Journal of Materials Processing Technology, 151, 2004, pp. 48-53.
  • [64] Plancak M., Vollertsen F., Woitschig J.: Analysis, finite element simulation and experimental investigation of friction in tube hydroforming, Journal of Materials Processing Technology, 170, 2005, pp. 220-228.
  • [65] Ray P., Mac Donald B.J.: Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis, Finite Elements in Analysis and Design, 41, 2004, pp. 173-192.
  • [66] Aydemir, A., Vree, J.H.P., Brekelmans W.A.M., Geers M.G.D., Sillekens W.H., Werkhoven R.J.: An adaptive simulation approach designed for tube hydroforming processes, Journal of Materials Processing Technology, 159, 2005, pp. 303-310.
  • [67] Mac Donald B.J., Hashimi M.S.J.: Finite element simulation of bulge forming of a crossjoint from tubular blank, Journal of Materials Processing Technology, 103, 2000, pp. 333-342.
  • [68] Mac Donald B.J., Hashimi M.S.J.: Tree-dimensional finite element simulation of bulge forming using a solid bulging medium, Finite Element Analysis and Design, 37, 2001, pp. 107-116.
  • [69] Zadeh H.K., Mashhadi M.M.: Finite element simulation and experimental in tube hydroforming of unequal T shapes, Journal of Materials Processing Technology, 177, 2006, pp. 303-310.
  • [70] Dohmann F., Hartl Ch.: Hydroforming-applications of coherent FE Simulations to the development of product and processes, Journal of Materials and Technology, 150, 2004, pp. 18-24.
  • [71] Hartl Ch.: Theoretical fundamentals of hydroforming, Proceedings of the International Conference on Hydroforming, Stuttgart, Germany, 12th/13th, October, 1999, pp. 28-37.
  • [72 ] Vollertsen F.: Challenges and chances of hydroforming of aluminum alloys, in: O. Hahn, X.-S. Yi (Eds.), Proceedings of the Chinese-German Ultralight Symposium, DVSBerichte Band, Vol. 218, 2001, pp. 71-91.
  • [73] Bauer H., Hartl Ch., Haas A.: Hydroforming-optimized process design with the aid of the FEA, Proceedings of the Advanced Technology Symposium on Tube Hydroforming, Iron and Steel Society, Detroit, MI, USA, 20-22 June, 1999, pp. 98-105.
  • [74] Böhm A., Hartl Ch., Abbey T.: Process and tool technology for hydroforming: case study and technical and economic considerations, Proceedings of the International Conference on Tube Hydroforming, Columbus, USA, 13-14, June, 2000, pp. 123-128.
  • [75 ] Kocańda, A., Sadłowska, H.: An approach to process limitations in hydroforming of Xjoints as based on formability evaluation, Journal of Materials Processing Tech, Volume: 177, Issue: 1-3, 3th July, 2006, pp. 663-667.
  • [76] Sadłowska H., Kocańda A.: Comparison of numerical models for hydroforming of Xshapes, Computer Methods in Materials Science, Vol. 7, No. 2, 2007, pp. 294-298.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0035-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.