PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagatlon of Rayleigh-Lamb waves in thermomicrostretch elastic plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The propagation of waves in a thermo-microstretch elastic plate subjected to stress free isothermal and thermally insulated conditions is investigated in the context of the conventional coupled thermoelasticity (CT), Lord-Shulman (LS), and Green-Lindsay (GL) theories of thermoelasticity. The secular equations for the thermomicrostretch elastic plate in a closed form and isolated mathematical conditions for the symmetric and skewsymmetric wave mode propagation in completely separate terms are derived. The secular equations for the thermo-microstretch elastic plate, coupled thermoelastic, micropolar elastic, thermoelastic and elastic plates have been deduced as particular cases from the secular equations derived. At short wave length limits, the secular equations for the symmetric and skew symmetric waves in stresses free, thermally insulated and isothermal, thermo-microstretch elastic plate reduce to the Rayleigh surface wave's frequency equation. Finally, in order to illustrate the analytical development, the numerical solution is carried out for aluminum-epoxy composite material. The symmetric and skew symmetric wave modes are computed numerically and presented graphically. The theory and numerical computations are found to be in close agreement.
Rocznik
Strony
1147--1163
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • Acharya D. and Sengupta P.R. (1977): Two dimensional wave propagation in a micropolar thermoelastic layer. - Int. J. Eng. Sci., vol.15, pp.210-217.
  • Bofill K. and Quintanilla R. (1995): Some qualitative results for the linear theory of thermo-microstretch elastic solids. - Int. J. Eng. Sci., vol.33, pp.2115-2125.
  • Chandrasekhariah D.S. (1986): Heat flux dependent micropolar thermoelasticity. - Int. J. Eng. Sci., vol.24, pp.1389-1395.
  • Ciarletta M. (1999): On bending of microstretch elastic bodies. - Int. J. Eng. Sci., vol.37, pp.1309-1318.
  • Cicco S.D. and Nappa L. (1997): Torsional and flexure of microstretch elastic circular cylinder. - Int. J. Eng. Sci., vol.35, pp.573-583.
  • D'Apice (1999): Spatial behavior of the states of bending in microstretch elastic plates. - An Stiint. Univ. Oviclius Constanta Ser. Mat., vol.7, pp.51-65.
  • Dost S. and Tabarrok B. (1978): Generalized micropolar thermoelasticity. - Int. J. Eng. Sci., vol.16, pp.173-186.
  • Eringen A.C. (1970): Foundation of micropolar thermoelasticity. - Course of Lectures no.23, CISM Udine, Springer.
  • Graff K.F. (1991): Wave motion in elastic solids. - New-York: Dover Publications.
  • Green A.E. and Lindsay K.A. (1972): Thermoelasticity. - J. Elasticity, vol.2, pp.1-7.
  • Iesan D. and Pompei A. (1995): On the equilibrium theory of microstretch elastic bodies. - Int. J. Eng. Sci., vol.33, pp.399-410.
  • Kumar R. (1996): Wave propagation in micropolar viscoelastic generalized thermoelastic medium with stretch. - Ganita Sandesh, vol.10, pp.77-86.
  • Kumar R. and Singh B. (1996): Wave propagation in a micropolar generalized thermoelastic body with stretch. - Proc. Indian Acad. Sci. (Math. Sci.), vol.106, pp.183-189.
  • Kumar R. and Singh B. (1998a): Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic half space with stretch. - Indian J. Pure Appl. Math., vol.29, pp.657-669.
  • Lamb H. (1917): On waves in an elastic plate. - Proc. R. Soc. London, Ser. A, vol.93, pp.114-128.
  • Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermo elasticity. - J. Mech. Phys. Solids, vol.15, pp.299-309.
  • Nowacki W. (1966): Couple stress theory in the theory of thermoelasticity. - Proc. IUTAM Symposia, Vienna, Springer-Verlag, pp.259-278.
  • Nowinski J.L. (1993): On the surface waves in an elastic micropolar and microstretch medium with non-local cohesion. - Acta Mechanica, vol.96, pp.97-108.
  • Sharma J.N., Kumar V. and Sud S.P. (2000): Pane harmonic waves in orthorhombic thermoelastic materials. - J. Acoust. Soc. Am., vol.107, pp.293-305.
  • Sharma J.N., Pathania V. and Gupta S.K. (2004): Circular crested waves in anisotropic thermoelastic plates with in viscid liquid. - Int. J. Eng. Sci., vol.42, pp.99-121.
  • Singh B. and Kumar R. (1998c): Reflection of waves from the flat boundary of a micropolar generalized thermoelastic half space. - Int. J. Eng. Sci., vol.36, pp.865-890.
  • Singh B. and Kumar R. (1998b): Wave propagation in a generalized thermo-microstretch elastic solid. - Int. J. Eng. Sci., vol.36, pp.891-912.
  • Strunin D.V. (2001): On characteristics times in generalized thermoelasticity. - J. Appl. Math., vol.68, pp.816-817.
  • Tomar S.K. and Kumar R. (1999): Elastic wave propagation in a cylindrical bore situated in a micropolar elastic medium with stretch. - Proc. Indian Acad. Sci. (Math. Sci.), vol.109, pp.425-433.
  • Tomar S.K., Kumar R. and Kaushik V.P. (1998): Wave propagation of micropolar elastic medium with stretch. - Int. J. Eng. Sci., vol.36, pp.683-698.
  • Touchert T.R. and Claus W.D., Jr. and Ariman T. (1968): The linear theory of micropolar thermoelasticity. - Int. J. Eng. Sci., vol.6, pp.37-47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0034-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.