PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Thermoelastic interactions without energy dissipation due to various sources

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The linear theory of thermoelasticity without energy dissipation is employed to investigate the disturbance due to mechanical (horizontal or vertical) and thermal source in a homogeneous, thermoelasic half-space. Laplace-Fourier transforms are applied to the basic equations to form a vector matrix differential equation, which is then solved by using the eigenvalue approach. The displacements, stresses and temperature distribution so obtained in the physical domain are computed numerically and ilIustrated graphically for a magnesium-like material for an insulated boundary and temperature gradient boundary, respectively.
Rocznik
Strony
431--446
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • Chandrasekharaiah D.S. (1986): Thermoelasticity with second sound: a review. - Appl. Mech. Rev., vol.39, pp.355-376.
  • Chandrasekharaiah D.S. (1996): A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. - J. Elasticity, vol.43, No.3, pp.279-283.
  • Chandrasekharaiah D.S. (1996): A uniqueness theorem in the theory of thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.19, No.3, pp.267-272.
  • Chandrasekharaiah D.S. and Srinath K.S. (1997): Axisymmetric thermoelastic interaction without energy dissipation in an unbounded body with cylindrical cavity. - J. Elasticity, vol.46, No.1, pp.19-31.
  • Chandrasekharaiah D.S. and Srinath K.S. (2000): Thermoelastic waves without energy dissipation in an unbounded body with spherical cavity. - Internat. J. Math and Math. Sci., vol.23, No.8, pp.555-562.
  • Dhaliwal R.S. and Singh A. (1980): Dynamic coupled thermoelasticity. - Hindustan Publ. Corp., New Delhi, India, p.726.
  • Green A.E., and Lindsay K.A. (1972): Thermoelasticity. - J. Elasticity, vol.2, pp.1-7.
  • Green A.E. and Naghdi P.M. (1991): A re-examination of the basic postulates of thermomechanics. - Proc. R. Soc. London, Ser.A, vol.432, pp.171-194.
  • Green A.E. and Naghdi P.M. (1992): On undamed heat waves in elastic solid. - J. Thermal Stresses, vol.15, pp.253-264.
  • Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. - J. Elasticity, vol.31, pp.189-208.
  • Green A.E. and Naghdi P.M. (1995): A unified procedure for construction of theories of deformable media. I Classical continuum Physics, II Generalized continua, III Mixtures of interacting continua. - Proc. R. Soc. London A, vol.448, pp.335-356, 357-377, 379-388.
  • Honig G. and Hirdes U. (1984): A method for the numerical inversion of Laplace transform. - Journal of Computational and Applied Mathematics, vol.10, pp.113-132.
  • Iesan D. (1998): On the theory of thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.21, No.3, pp.295-307.
  • Ignaczak J. (1989): Generalized thermoelasticity and its applications. In: Thermal stresses, vol.III (Hetnarski, R.B.ed.). - Chapter 4. Oxford: Elsevier.
  • Joseph D.D. and Preziosi L. (1989): Heat waves. - Revs. Mod. Phys., vol.61, pp.41-73 (1989) and addendum, vol.62, pp.375-391 (1990).
  • Li H. and Dhaliwal R.S. (1996): Thermal shock problem in thermoelasticity without energy dissipation. - Indian J. Pure Appl. Math., vol.27, No.1, pp.85-101.
  • Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. - J. Mech. Phys. Solids, vol.15, pp.299-309.
  • Press W.H., Teukolshy S.A., Vellerling W.T. and Flannery B.P. (1986): Numerical Recipes in FORTRAN (2nd edn.). - Cambridge: Cambridge University Press.
  • Roychoudhuri S.K. and Bandyopadhyay Nupur (2005): Thermoelastic wave propagation in a rotating elastic medium without energy dissipation. - International Journal of Mathematics and Mathematical Sciences, vol.1, pp.99-107.
  • Scott N.H. (1996): Energy and dissipation of inhomogeneous plane waves in thermoelasticity. - Wave Motion, vol.23, No.4, pp.393-406.
  • Quintanilla R. (1999): On the spatial behaviour in thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.22, pp.213-224.
  • Quintanilla R. (2001): Instability, non-existence in the nonlinear theory of thermoelasticity without energy dissipation. - Continuum Mech. Thermodyn., vol.13, pp.121-129.
  • Quintanilla R. (2002): On existence in thermoelasticity without energy dissipation. - J. Thermal Stresses, vol.25, pp.195-202.
  • Quintanilla R. (2003): Thermoelasticity without energy dissipation of nonsimple materials. - Jour. Appl. Mathematics Mechanics (ZAMM), vol.83, pp.172-180.
  • Wang J. and Slattery S.P. (2002): Thermoelasticity without energy dissipation for initially stressed bodies. - International Journal of Mathematics and Mathematical Sciences, vol.31, No.6, pp.329-337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0031-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.