Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The goal of this research is to obtain a theoretical value of von Karaman's constant from the first principaIs by utilizing renormalization group (RG) results. Fourier decomposition obtained in RG theory of turbulence is considered in the limit of small wavenumbers. Utilizing RG results, a theoretical value of the coefficient in the dissipation rate equation is also obtained.
Rocznik
Tom
Strony
329--335
Opis fizyczny
Bibliogr. 19 poz., tab.
Twórcy
autor
autor
autor
- Institute of Engineering Thermophysics, National Academy of Sciences Kiev 03057, UKRAINE, avkuznet@eos.ncsu.edu
Bibliografia
- Canuto V.M. and Dubovikov M.S. (1997): A new approach to turbulence. - Int. J. Modern Phys., vol.12, pp.3121-3152.
- Eyink G.L. (1994): The renormalization group method in statistical hydrodynamics. - Phys. Fluids, vol.6, pp.3063-3078.
- Forster D., Nelson D.R. and Stephen M.J. (1977): Large-distance and long-time properties of a randomly stirred fluid. - Physical Review A, vol.16, pp.732-749.
- Hinze J.O. (1976): Turbulence. - London: McGraw-Hill.
- Kraichnan R.H. (1971): Inertial-range transfer in two- and tree-dimensional turbulence. - J. Fluid Mech., vol.47, part 3, pp.525-535.
- Leslie D.C. (1973): Developments in the theory of turbulence. - London: Oxford University Press.
- McComb W.D. (1990): The physics of Fluid Turbulence. - Oxford: Clarendon Press.
- McComb W.D. (2006): Asymptotic freedom, non-Gaussian perturbation theory, and the application of renormalization group theory to isotropic turbulence. - Physical Review E, vol.73, 026303, pp.1-7.
- McKeon B.J., Li J., Jiang W., Morrison J.F. and Smits A.J. (2004): Further observations on mean velocity distribution in fully developed pipe flow. - J. Fluid Mech., vol.501, pp.135-147.
- Oberlack M. (1999): Similarity in non-rotating and rotating turbulent pipe flows. - J. Fluid Mech., vol.379, pp.1-22.
- Oberlack M. (2000): Asymptotic expansion, symmetry groups, and invariant solutions of laminar and turbulent wall-bounded flows. - ZAMM, vol.80, pp.791-800.
- Oberlack M. (2001): Unified approach for symmetries in parallel turbulent shear flows. - J. Fluid Mech., vol.427, pp.299-328.
- Österlund J.M., Johansson A.V., Nagib H.M. and Hites M.H. (2000): A note on the overlap region in turbulent boundary layers. - Physics of Fluids, vol.12, pp.1-4.
- Saveliev V.L. and Gorokhovski M.A. (2005): Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation. - Physical Review E, vol.72, 016302, pp.1-6.
- Schlichting H. (1979): Boundary-layer theory. - 7th ed. New York: McGraw-Hill.
- Teodorovich E.V. (1994): To the Yakhot-Orszag turbulence theory. - Mekhanika Zhidkosti i Gaza, vol.6, pp.40-51, in Russian.
- Yakhot V. and Orszag S.A. (1986): Renormalization group analysis of turbulence. I. Basic theory. - J. Sci. Соmp., vol.1, pp.3-51.
- Yakhot V., Orszag S.A., Thahgam S., Gatski T.B. and Speziale C.G. (1992): Development of turbulence models for shear flows by double expansion technique. - Phys. Fluids A, vol.4, pp.1510-1520.
- Zanoun E.-S., Nagib H., Durst F. and Monkewitz P. (2002): High Reynolds number channel data and their comparison to recent asymptotic theory (Invited). - AIAA Paper 2002-1102, A02-14297.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0031-0001