PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Finite element modeling of laminar flow of a third grade fluid in a Darcy-Forcheimmer porous medium with suction effects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model to simulate the steady laminar flow of an incompressible, third grade, non-Newtonian fluid past an infinite porous plate embedded in a Darcy-Forcheimmer porous medium is presented. A number of special cases are examined for the governing nonlinear differential equation. The model is solved with appropriate boundary conditions using the finite element method. Velocity and velocity gradient are plotted graphically for variation in permeability (k), Forcheimmer parameter (b), third grade materiaI parameter (f3 3 ) , and suction effect (Vo). It is shown that velocities are generally decreased transverse to the plate surface with increasing Forcheimmer parameter; increasing permeability conversely boosts the velocities, as this corresponds to an increasingly fluid (Le., progressively less porous) regime. The third grade material parameter is also seen to substantially increase the velocities in the direction normal to the plate surface. The special case of a second order viscoelastic flow is also studied. The flow scenario finds applications in polymer extrusion processes, and other important industrial rheology systems.
Rocznik
Strony
215--233
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Engineering, Technology, Design Department, Manchester Metropolitan University Oxford Road, Manchester, MS, ENGLAND, U.K., h.s.takhar@mmu.ac.uk
Bibliografia
  • Ayub M., Rasheed A. and Hayat T. (2003): Exact flow of a third grade fluid past a porous plate using homotopy analysis method. - Int. J. Engineering Science, vol.41, pp.2091-2103.
  • Bathe K.J. (1996): Finite Element Procedures. - New Jersey: Prentice-Hall.
  • Bég O.A. and Takhar H.S. (2002): Mathematical modeling of radiative-convective dissipative flow of a second order viscoelastic fluid thorugh a Darcy-Forcheimmer-Brinkman porous regime with viscous heating and transpiration effects: Keller-Box Numerical Solutions. - 5th World Congress on Computational Mechanics, Vienna University of Technology, Wein, Vienna, Austria, July [Fluid Dynamics Posters III].
  • Bég O.A., Takhar H.S., Bég O.A., Kucaba-Pietal A., Bhargava R. and Gorla R.S. (2008): Micropolar Flows and Transport Phenomena in Engineering Science: In preparation for Imperial College Press, November.
  • Bég O.A., Takhar H.S., Soundalgekar V.M. and Woo G. (2001): Hydrodynamic and heat transfer modeling of a non-Newtonian fluid flowing through geomaterial with boundary effects: Numerical simulation. - 2nd Int. Conf. on Computational Heat and Mass Transfer, Rio De Janeiro, Brazil, October 22-26.
  • Bég O.A., Takhar H.S., Nath G. and Kumari M. (2001): Computational fluid dynamics modeling of buoyancy-induced viscoelastic flow in a porous medium with magnetic field effects. - Int. J. Applied Mechanics and Engineering, vol.6, No.1, pp.187-210.
  • Bird R.B. (1965): Chemical Engineering Progress Symposium. - Series 58, 61, Chapter 6.
  • Chamkha Ali J, Takhar H.S. and O. Anwar Beg (2004): Radiative free convective non-Newtonian fluid flow past a wedge embedded in a porous medium. - International Journal of Fluid Mechanics Research, vol.31, No.2, pp.1-15.
  • Dunn J.E. and Fosdick R.L. (1974): Thermodynamics, stability and boundedness of fluids of complexity 2, and flows of second grade. - Arch. Rat. Mech. Analys., vol.56, pp.191-252.
  • Fosdick R.L. and Rajagopal K.R. (1980): Thermodynamics and stability of fluids of third grade. - Proc. Royal Soc., London, A, vol.369, pp.351-377.
  • Hayat T., Nadeem S., Asghar S. and Siddiqui A.M. (2003): MHD rotating flow of a third grade fluid on an oscillating porous plate. - Acta Mechanica, vol.152, pp.177-190.
  • Le Roy Ph. and Pierrard J.M. (1972): Fluides viscoélastiques non-lineaires satisfaisant a un principle de superposition, - VI Congress Int. de Rhéologie, Lyon, Septembre.
  • Markowitz H. and Coleman B.D. (1964): Incompressible second order fluids. - Adv. Applied Mech., vol.8, p.69.
  • Middleman S. (1977): Fundamentals of Polymer Processing. - New York: McGraw-Hill.
  • Molloica F. and Rajagopal K.R. (1999): Secondary flows due to axial shearing of third grade fluids between two eccentrically placed cylinders. - Int. J. Engineering Science, vol.37, pp.411-429.
  • Pascal H. (1983): Rheological behaviour effect of non-Newtonian fluids on steady and unsteady flow through porous media. - Int. J. Numerical Analyt. Meth. Geomechanics, vol.7, pp.207-224.
  • Reddy J.N. (1985): An Introduction to the Finite Element Method. - New York: McGraw-Hill.
  • Reiner M. (1954): A mathematical theory of dilatancy. - Amer. J. Math., vol.67, p.350.
  • Reiner M. (1958): Rheology, Handbuch der Physik. - Vol.4, Berlin/Gottingen/Heidelberg: Springer.
  • Rivlin R.S. (1948): The hydrodynamics of non-Newtonian fluids, 1. - Proc. Royal Soc., London, Series A, vol.193, p.260.
  • Savins J.G. (1969): Non-Newtonian flows through porous media. - AIChE J., vol.14, pp.24-57.
  • Schlichting H. (1979): Boundary-Layer Theory. - 7th Edition, New York: McGraw-Hill.
  • Siddiqui A.M. and Kaloni P.N. (1987): Plane steady flows of a third grade fluid. - Int. J. Engineering Science, vol.25, pp.171-188.
  • Spriggs T.W., Huppler J.D. and Bird R.B. (1966): An experimental appraisal of viscoelastic models. - Trans. Soc. Rheol., vol.10, p.191.
  • Takhar H.S. and Bég O.A. (1996): Non-Darcy effects on mixed convection boundary layer low past a semi-infinite vertical plate in a saturated porous medium. - Heat and Mass Transfer, Wärme-und Stoffübertragung, vol.32, pp.33-44.
  • Takhar H.S., Agarwal R.S. and Bhargava R. (1997): The squeezing of a micropolar fluid between two plates. - Int. J. Applied Mechanics and Engineering, vol.2, pp.369-377.
  • Takhar H.S., Gorla R.S.R. and Slaouti A.S. (1997): Mixed convection in non-Newtonian fluids along a vertical plate in porous media with surface mass transfer. - Int. J. Num. Meth. Heat Fluid Flow, vol.7, pp.519-532.
  • Takhar H.S., Bég O.A. and Bhargava R. (2006): The squeezing of a third-grade fluid between porous parallel plates in a Darcian porous medium with applications in synovial biomechanics. - In preparation for J. Biomechanics, August.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0028-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.