Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The response of a micropolar cubic crystal due to various sources has been investigated. The eigen-value approach after applying Laplace and Fourier transforms has been employed to solve the problem. The integral transforms have been inverted by using a numerical technique to obtain the displacement, microrotation and stress components in the physical domain. The results of normal displacement, normal force stress and tangential couple stress have been compared for a micropolar cubic crystal and micropolar isotropic solid and illustrated graphically.
Rocznik
Tom
Strony
337--357
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
autor
- Department of Mathematics, Kurukshetra University Kurukshetra, Haryana, INDIA, 136119, rajneesh_kuk@rediffmail.com
Bibliografia
- Bertram A., Bohlke T., Gaffke N., Heiligers, B. and Offinger, R. (2000): On the generation of discrete isotropic orientation distributions for linear elastic cubic crystals. - Journal of Elasticity, vol.58, No.3, pp.233-248.
- Boulanger P. and Hayes M. (2000): Special inhomogeneous plane waves in cubic elastic materials. - Zeitschrift fur Angewandte Mathematik Physik, vol.51, pp.1031-1038.
- Chung D.H and Buessem W.R. (1967): The elastic anisotropy of crystals. - Journal of Applied Physics, vol.38, No.5, pp.2010-2012.
- Destrade M. (2001): The explicit secular equation for surface acoustic waves in monoclinic elastic crystals. - Journal of Acoustical Society of America, vol.109, No.4, pp.1398-1402.
- Domanski W and Jablonski T. (2001): On resonances of nonlinear elastic waves in a cubic crystal. - Archives of Mechanics, vol.53, No.2, pp.91-104.
- Eringen A.C. (1966a): Linear theory of micropolar elasticity. - Journal of Mathematics and Mechanics, vol.15, pp.909- 923.
- Eringen A.C. (1996b): Theory of micropolar fluids. - Journal of Mathematics and Mechanics, vol.16, pp.1-18.
- Gauthier R.D. (1982): Experimental investigations on micropolar media, In: Mechanics of Micropolar Media (O.Brulin, R.K.T.Hsieh (Eds.). - Singapore: World Scientific.
- Honig G. and Hirdes V. (1984): A method for the numerical inversion of the Laplace transform. - Journal of Computational and Applied Mathematics, vol.10, pp.113-132.
- Kobayashi R. and Giga Y. (2001): On anisotropy and curvature effects for growing crystals. - Japan Journal of Industrial and Applied Mathematics, vol.18, No.2, pp.207-230.
- Kumar R. and Choudhary S. (2002a): Influence and Green's function for orthotropic micropolar continua. - Archives of Mechanics, vol.54, pp.185-198.
- Kumar R. and Choudhary S. (2002b): Dynamical behavior of orthotropic micropolar elastic medium. - Journal of vibration and Control, vol.8, pp.1053-1069.
- Kumar R. and Choudhary S. (2003): Response of orthotropic micropolar elastic medium due to various sources. - Meccanica, vol.38, pp.349-368.
- Kumar R. and Rani L. (2003): Elastodynamics of time harmonic sources in a thermally conducting cubic crystal. - International Journal of Applied Mechanics and Engineering, vol.8, No.4, pp.637-650.
- Lie K.-H.C. and Koehler J.S. (1968): The elastic stress field produced by a point force in a cubic crystal. - Advances in Phys., vol.17, pp.421-478.
- Minagawa S., Arakawa K. and Yamada M. (1981): Dispersion curves for waves in a cubic micropolar medium with reference to Estimations of the Material constants for Diamond. - Bulletin of the Japan Society of Mechanical Engineers, vol.24, No.187, pp.22-28.
- Press W.H, Teukolsky S.A., Vellerling W.T and Flannery B.P. (1986): Numerical Recipes. - (Cambridge: Cambridge University Press ).
- Steeds J.W. (1973): Introduction to Anisotropic Elasticity Theory of Dislocations. - Oxford: Clarendon Press.
- Zhou F. and Ogawa A. (2002): Elastic solutions for a solid rotating disk with cubic anisotropy. - American Society of Mechanical Engineers, Journal of Applied Mechanics, vol.69, pp.81-83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0023-0020