Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, a viscoelastic boundary layer fluid flow over an exponentially stretching continuous sheet has been examined. The flow is assumed to be generated solely by the application of two equal and opposite forces along the x-axis such that stretching of the boundary surface is of exponential order in x. Approximate analytical similarity solutions (zero and first order) of the highly non-linear boundary layer equation are obtained for the dimensionless stream function and velocity distribution function after transforming the boundary layer equation into Riccati type and solving that sequentially. The first-order solution is derived in the form of confluent hypergeometric Whittaker functions. The solutions are verified at the boundary sheet. These solutions (zero and first order) involve an exponential dependence of the similarity variable, the stretching velocity and the stream function on the axial coordinate. The accuracy of the analytical solutions is also verified by the numerical solutions obtained by employing the Runge-Kutta fourth order method with shooting. The effects of various physical parameters on the velocity profile and skin-friction coefficient are also discussed in this paper.
Rocznik
Tom
Strony
321--335
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Department of Mathematics, Gulbarga University Gulbarga 585 106, Karnataka, INDIA, sujitkumar_khan@rediffmail.com
Bibliografia
- Abramowitz M. and Stegun I.A. (1970): Handbook of Mathematical functions. - New York: Dover Publications, Inc.
- Ali M.E. (195): On thermal boundary layer on a power-law stretched surface with suction or injection. - Int. J. Heat Mass Flow, vol.16, pp.280-290.
- Andersson H.I. (1992): MHD flow of a viscoelastic fluid past a stretching surface. - Acta. Mech., vol.95, pp.227-230.
- Beard D.W. and Walters K. (1964): Elastico-viscous boundary layer flows. 1. Two dimensional flow near a stagnation point. - Proc. Comb. Phil. Soc., vol.60, pp.667.
- Char M.I. (1994): Heat and mass transfer in a hydromagnetic flow of viscoelastic fluid over a stretching sheet. - J. of Math. Analysis and Appl., vol.186, pp.674-689.
- Coleman B.D. and Noll W. (1960): An approximation theorem for functionals with applications in continuum mechanics. - Arch. Rat. Mech. Anal., vol.6, pp.355.
- Dandapat B.S. and Gupta A.S. (1989): Flow and heat transfer in a viscoelastic fluid over a stretching sheet. - Int. J. Non-linear Mech., vol.24, No.3, pp.215-219.
- Elbashbeshy E.M.A. (2001): Heat transfer over an exponentially stretching continuous surface with suction. - Arch. Mech., vol.53, No.6, pp.643-651.
- Fosdick R.L and Rajagopal K.R. (1979): Anomalous features in the model of second order fluids. - Arch. Ration. Mech. Anal., vol.70, pp.145.
- Gupta P.S. and Gupta A.S. (1977): Heat and mass transfer on a stretching sheet with suction or blowing. - Canad. J. of Chem. Eng., vol.55, pp.744-746.
- Kumaran V. and Ramanaiah G. (1996): A note on the flow over a stretching sheet. - Acta Mech., vol.116, pp.229-233.
- Lawrence P.S. and Rao B.N. (1992): Heat transfer in the flow of viscoelastic fluid over a stretching sheet. - Acta. Mech., vol.93, pp.53-61.
- Mcleod J.B. and Rajagopal K.R. (1987): On the uniqueness of the flow of a Navier-Stokes fluid due to a stretching boundary. - Arch. Rational Mech. Anal., vol.98, pp.385-393.
- Rajagopal K.R., Na T.Y. and Gupta A.S. (1984): Flow of a viscoelastic fluid over a stretching sheet. - Rheol. Acta., vol.23, pp.213-215.
- Rajagopal K.R., Na T.Y. and Gupta A.S. (1987): A non similar boundary layer on a stretching sheet in a non- Newtonian fluid with uniform free stream. - J. Math. Phy. Sc., vol.21, No.2, pp.189-200.
- Rao B.N. (1996): Technical note: Flow of a fluid of second grade over a stretching sheet. - Int. J. Non-Linear Mech. vol.31, No.4, pp.547-550.
- Rollins D. and Vajravelu K. (1991): Heat transfer in a second order fluid over a continuous stretching surface. - Acta. Mech., vol.89, pp.167-178.
- Sakiadis B.C. (1961): Boundary layer behaviour on continuous solid surfaces: 1. Boundary layer equations for twodimensional and axisymmetric flow. - A.I.Ch. E.J., vol.7, pp.26-28.
- Sonth R.M., Sujit Kumar Khan, Abel M.S. and Prasad K.V. (2002): Heat and mass transfer in a viscoealatic fluid flow over an accelerating surface with heat source/sink and viscous dissipation. - Heat and Mass Transfer, vol.38, pp.213-220.
- Subhash Abel M., Sujit Kumar Khan and Prasad K.V. (2002): Study of viscoelastic fluid flow and heat transfer over a stretching sheet with variable viscosity. - International J. Non-Linear Mechanics, vol.37, pp.81-88.
- Troy W.C., Overman E.A., Ermentrout H.G.B. and Keener J.P. (1987): Uniqueness of flow of a second order fluid past a stretching sheet. - Qurat. Appl. Math., vol.44, pp.753-755.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0023-0019