Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We proposed a shear rheological relation based on a network theory regarding a suspension-type electro-rheological fluid (ERF) containing smectite particles. The theoretical constitutive equations concerning ERF under a D. C. electric field were derived using Rodge's network theory. The equations have creative and destructive functions expressing behavior as aggregated particles influenced by shear flow and an electric field. The theoretical results regarding viscosity based on the theoretical equations were compared with experimental data concerning the static shear stress in relation to shear rate obtained using a rotating concentric cylindrical rheometer. The viscosity behaves as a non-affine motion at a small shear rate range and as affine motion at large one. We investigated the parameters in the equations of the network theory. Next, we applied the proposed network theory to a rectangular duct ERF flow problem. The theoretical result can explain quantitatively the experimental data regarding pressure difference at a large given flow velocity. At a small given flow velocity range, the mechanical model containing the Maxwell model by Shimada can explain the experimental data quantitatively.
Rocznik
Tom
Strony
123--141
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
autor
autor
- Fukushima University, 1 Kanayagawa Fukushima, 960-1296, JAPAN
Bibliografia
- ARP P.A., Foister R.T. and Mason S.G. (1980): Some electrohydrodynamic effects in fluid dispersions. - Advances in Colloid and Interface Science, vol.12, pp.295-356.
- Atkin R.J., Shi X. and Bullough W.A. (1991): Solutions of the constitutive equations for the flow of an electrorheological fluid in radial configurations. - Journal of Rheology, vol.35, No.7, pp.1441-1461.
- Bird R.B, Curtiss C.F, Armstrong R.C. and Hassager O. (1987): Dynamics of polymeric liquids, volume2 kinetic theory. - John Wiley and Sons, Inc. Press, pp.351-391.
- Brunn P.O. and Abu-Jdayil B. (1998): Fluids with transverse isotropy as models for electrorheological fluids. - ZAMM, Zeitschrift fur Angewandte Mathematik und Mechanik, vol.78, No.2, pp.97-107.
- Doi M. (1994): Electro Responsive Fluids. - Proceedings of the Japan Society of Mechanical Engineers, No.940-53, pp.219-223 (in Japanese).
- Fujita T., Saiki H. and Shimada K. (1997): Electro-rheological fluid with smectite. - Report of Smectite, vol.7, No.1, pp.12-20 (in Japanese).
- Gamota D.R. and Filisko F.E. (1991): Dynamic mechanical studies of electrorheological materials: moderate. - Journal of Rheology, vol.35, No.3, pp.399-425.
- Gast A.P. and Zukoski C.F. (1989): Electrorheological fluids as colloidal suspensions. - Advances in Colloid and Interface Science, vol.30, pp.153-202.
- Gavin H.P., Hansen R.D. and Filisko F.E. (1996): Electrorheological dampers, Part 1: analysis and design. - ASME Journal of Applied Mechanics, vol.63, pp.676-682.
- Gogosov V.V., Nikiforovich E.I. and Tolmachev V.V. (1979): Electrization of a low-conductivity liquid flowing through a metal pipe. - Magnitnaya Gidrodinamica, vol.2, pp.59-62.
- Halsey T.C. (1992): Electrorheological fluids. - Science, vol.258, pp.761-766.
- Huilgol R.R. and Phan-Thien N. (1997): Fluid mechanics of viscoelasticity. - Elsevier Science B.V. Press, pp.222.
- Johnson A.R., Makin J., Bullough W.A., Firoozian R. and Hosseinisianaki A. (1993): Fluid durability in a high speed electro-rheological clutch. - Journal of Intelligent Material and Systems Structures, vol.4, No.4, pp.527-532.
- Kamath G.M. and Wereley N.M. (1997): Nonlinear viscoelastic plastic model for electrorheological fluids. - Smart Materials and Structures, vol.6, No.3, pp.351-359.
- Kim J.W., Kim S.G., Choi H.J., Suh M.S., Shin M.J. and Jhon M.S. (1999): Synthesis and electrorheological characterization of polyaniline and Na+-montmorillonite clay nanocomposite. - Proceedings of 7th International Conference on Electro-rheological Fluids, Magnet-rheological Suspensions, pp.111-118.
- Klingenberg D.J., Swol F.V. and Zukoski C.F. (1991): The small shear rate response of electrorheological suspensions, 1. Simulation in the point-dipole limit. - Journal of Chemical Physics, vol.94, No.9, pp.6160-6169.
- Lee D.Y., Choi Y.T. and Wereley N.M. (2002): Performance analysis of ER/MR impact damper systems using Herschel-Bulkley model. - Journal of Intelligent Material Systems and Structures, vol.13, No.7-8, pp.525-531.
- Lindler J. and Wereley N.M. (2003): Quasi-steady Bingham-plastic analysis of an electrorheological flow mode bypass damper with piston bleed. - Smart Materials and Structures, vol.12, No.3, pp.305-317.
- Martin J.E. and Anderson R.A. (1996): Chain model of electrorheology. - Journal of Chemical Physics, vol.104, No.12, pp.4814-4827.
- Nishida H., Shimada K., Iwabuchi M., Fujita T. and Okui K. (1999a): Basic characteristics for devices of the rotating concentric cylinder type using ERF with smectite particles. - Journal of the Japan Hydraulics and Pneumatics, vol.30, No.1, pp.1-9 (in Japanese).
- Nishida H., Shimada K., Iwabuchi M., Fujita T. and Okui K. (1999b): Effects of experimental factors on steady characteristics on devices of rotating disk type using ERF with smectite particles. - Transactions of the Japan Society of Mechanical Engineers, vol.65, No.629, Ser.C, pp.269-276 (in Japanese).
- Nishida H., Shimada K., Iwabuchi M., Fujita T. and Okui K. (1999c): A study of steady torque characteristics of a rotating disk in ERF (1st report, comparison of flow curve between rotating concentric cylinder and rotating disk. - Transactions of the Japan Society of Mechanical Engineers, vol.65, No.633, Ser.B, pp.1703-1709 (in Japanese).
- Nishida H., Shimada K., Iwabuchi M. and Okui K. (2002d): Effect of mass concentration and electrode gap on torque characteristics of a rotating disk in ERF. - Journal of the Japan Hydraulics and Pneumatics, vol.33, No.1, pp.1-8 (in Japanese).
- Nishida H. and Shimada K. (2002e): Characteristics of braking devices using ERF. - Proceedings of SPIE, vol.4934, pp.340-350.
- Oravsky V. (2002): Quasi-static heat transfer in an experimental device with a radial electro-structured fluid clutch. - Journal of Intelligent Material and Systems Structures, vol.13, No.4, pp.209-230.
- Otsubo Y., Edamura K., Fukube H. and Deyama K. (1997): Rheological changes of suspensions induced by electrohydrodynamic instability. - Proceedings of 6th International Conference on Electro-rheological Fluids, Magnet-rheological Suspensions and their Applications, pp.35-42.
- Peel D.J., Stanway R. and Bullough W.A. (1996): A generalized presentation of valve and clutch data for an ER fluid, and practical performance prediction methodology. - International Journal of Modern Physics B, vol.10, No.23/24, pp.3103-3114.
- Prudnikov V.V. (1979): Instability of a layer of a conducting viscous fluid surrounding a solid rod. - Magnitnaya Gidrodinamica, vol.4, pp.24-28.
- Sasada N. and Honda T. (1980): Electrorheological effect of fluid and its applications (6). - Science of Machine, vol.32, No.6, pp.777-782 (in Japanese).
- Shimada K., Fujita T., Iwabuchi M. and Okui K. (1996a): ER effect in rotating flow of electrorheological fluid with elastic particles. - Journal of the Japan Society of Powder and Powder Metallurgy, vol.43, No.6, pp.755-770 (in Japanese).
- Shimada K. and Fujita T. (2000b): A device to regulate rotational speed utilizing a rotating regulator with electrorheological fluid. - Experimental Mechanics, vol.40, No.2, pp.231-240.
- Shimada K., Nishida H. and Yamaguchi H. (2000c): Theoretical analysis of the hydrodynamic characteristics of electrorheological fluid in a parallel duct flow. - Applied Mechanics and Engineering, vol.5, No.4, pp.803-820.
- Shimada K., Nishida H. and Fujita T. (2000d): Difference in steady characteristics and response time of ERF on rotational flow between rotating disk and concentric cylinder. - International Journal of Modern Physics B, vol.15, No.6 and 7, pp.1050-1056.
- Shimada K. and Kamiyama S. (2000e): Hydrodynamic characteristics of electrorheological fluid in a parallel duct Flow. - International Journal of Modern Physics B, vol.15, No.6 and 7, pp.980-987.
- Stanway R., Sproston J.L., Prendergast M.J., Case J.R. and Wilne C.E. (1987a): ER fluids in the squeeze-flow mode: an application to vibration isolation. - Journal of Electrostatics, vol.28, No.1, pp.167-184.
- Stanway R., Sproston J.L. and El-Wahed A.K. (1996b): Application of electrorheological fluids in vibration control: a survey. - Smart Materials and Structures, vol.5, No.4, pp.464-482.
- Tanaka K., Sahashi A., Akiyama R. and Koyama K. (1995): Scaling behavior of response times of electrorheological suspensions with chain exchange resin particles. - Physical Review, vol.52, No.4, pp.R3325-R3328.
- Wereley N.M. and Pang Li (1998): Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plates models. - Smart Materials and Structures, vol.7, No.5, pp.732-743.
- Whittle M., Atkin R.J. and Bullough W.A. (1995): Fluid dynamic limitations on the performance of anelectrorhelogical clutch. - Journal of Non-Newtonian Fluid Mechanics, vol.57, No.1, pp.61-81.
- Yang F. (1997): Tension and compression of electrorheological fluid. - Journal of Colloid Interface Science, vol.192, pp.162-165.
- Zkakin A.I. and Tarapov I.E. (1979): Electrohydrodynamical instability of a weakly conducting fluid between two cylindrical electrodes with unipolar injection. - Magnitnaya Gidrodinamica, vol.4, pp.53-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0023-0008