PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forced vibrations due to mechanical loads in thermoviscoelastic halfspaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present article the Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of a material is used to investigate the forced vibrations due to mechanical loads acting on the boundary of a thermoviscoelastic continuum. The Laplace and Hankel transform technique has been employed to solve the boundary value problem in the transform domain, in the context of various theories of generalized thermoelasticity. The inverse transform integrals are evaluated by using Romberg integration in order to obtain the results in the physical domain. The temperature and stresses so obtained in the physical domain are computed numerically and presented graphically in different situations for a copper material. The comparison of results for different theories of generalized thermoviscoelasticity is also presented at appropriate stages of this work.
Rocznik
Strony
105--121
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
autor
autor
  • Department of Applied Sciences, National Institute of Technology Hamirpur 177 005 INDIA, jns@recham.ernet.in
Bibliografia
  • Acharya D.P. and Mondal A. (2002): Propagation of Rayleigh surface waves with small wave-lengths in non-local viscoelastic solids. - Sadhana, vol.27, pp.605-612.
  • Ackerman C.C., Bentman B., Fairbank H.A. and Krumhansal R.A. (1966): Second sound in solid Helium. - Phys. Rev. Lett., vol.16, pp.789-791.
  • Ackerman C.C. and Overtone W.C. (1969): Jr. Second sound in solid helium, 3. - Phys. Rev. Lett., vol.22, pp.764.
  • Biot M. (1956): Thermoelasticity and irreversible thermo-dynamics. - J. Appl. Physics., vol.27, pp.240-253.
  • Cagniard L. (1962): Reflection and refraction of progress seismic waves. - New York: McGraw-Hill.
  • Chandrasekharaiah D.S. (1986): Thermoelasticity with second sound - A review. - Appl. Mech. Rev., vol.39, pp.355-376.
  • Chandrasekharaiah D.S. (1996): One-dimensional wave propagation in the linear theory of thermoelasticity with energy dissipation. - J. Thermal Stresses, vol.19, pp.695-710.
  • De-Hoop A.T. (1959): A modification of Caginard's method for solving seismic pulse problems. - Appl. Sci. Res., vol.38, pp.349-356.
  • Duhamel J. (1837): Second memoire sur les phenomenes thermo-mechanique. - J. de L'Ecole Polytechnique 15.
  • Ewing M., Jardetzky W.S. and Press F. (1957): Elastic waves in layered media. - McGraw Hill New York, pp.272-280.
  • Flugge W. (1967): Viscoelasticity. - Blasdell, London.
  • Fredudenthal A.M. (1954): Effect of rheological behaviour on thermal stresses. - J. Appl. Phys., vol.25, pp.1-10.
  • Green A.E. (1972): A note on linear thermoelasticity. - Mathematica, vol.19, pp.69-75.
  • Green A.E. and Lindsay K.A. (1972): Thermoelasticity. - J. Elasticity, vol.2, pp.1-7.
  • Green A.E. and Nagdhi P.M. (1991): A re-examination of the basic postulates of thermodynamics. - Proc. Roy. Soc. London Ser. A, vol.432, pp.171-194.
  • Green A.E. and Nagadhi P.M. (1992): On undamped heat waves in an elastic solid. - J. Thermal Stresses, vol.15, pp.252-264.
  • Green A.E. and Nagadhi P.M. (1993): Thermoelasticity without energy dissipation. - J. Elasticity, vol.31, pp.189-208.
  • Guyer R.A. and Krumhansl J.A. (1966): Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. - Phys. Rev., vol.148, pp.778.
  • Harinath K.S. (1975): Surface point source in generalized thermoelastic halfspace. - Indian J. Pure Appl. Math., vol.8, pp.1347-1351.
  • Hunter C. (1960): Visco-elastic waves, In: Progress in solid mechanics (Ian Sneddon and R. Hill, Eds). - North Interscience, Amsterdam, New York.
  • Li Honig and Dhaliwal R.S. (1996): Thermal shock problem in thermoelasticity without energy dissipation. - Indian J. Pure Appl. Math., vol.27, pp.85-101.
  • Lord H.W. and Shulman Y. (1967): The generalized dynamical theory of thermoelasticity. - J. Mech . Phys Solids, vol.15, pp.299-309.
  • Mukhopadhyay S. (2000): Effects of thermal relaxations on thermoviscoelasticity interactions in an unbounded body with a spherical cavity subjected to a periodic loading on the boundary. - J. Thermal Stresses, vol.23, pp.675-684.
  • Mukhopadhyay B. and Bera R.K. (1989): Effect of distributed instantaneous and continuous heat sources in an infinite conducting magneto-thermo-viscoelastic solid with thermal relaxation. - Comput. Math. Appl., vol.18, pp.723-728.
  • Nayfeh A. and Nasser S.N. (1972): Transient thermoelastic waves in a halfspace with thermal relaxations. - J. App. Math. Physics, vol.23, pp.50-67.
  • Neumann F. (1885): Vorlesungen Uber die Theorie der Elasticitat. - Meyer, Breslau.
  • Press W.H., Teukolky S.K., Velleraing W.T. and Flannery B.P. (1992): Numerical Recipes in FORTRAN, 2nd edition. - Cambridge University Press.
  • Sharma J.N. (1986): Transient generalized thermoelastic waves in a transversely isotropic halfspace. - Bull. Polish Acad. Sci. Tech. Sci., vol.34, pp.632-646.
  • Sharma J.N. and Chauhan R.S. (2001): Mechanical loads and heat sources in a generalized thermoelastic half space. - J. Thermal Stresses, vol.24, pp.651-675.
  • Sharma J.N. and Sharma P.K. (2001): On the transient thermoelastic waves. - Int. J. Mech. Eng., vol.6, pp.923-946.
  • Sharma J.N., Chauhan R.S. and Kumar R. (2000): Time harmonic sources in a generalized thermoelastic continuum. - J. Thermal Stresses, vol.23, pp.657-674.
  • Strunin D.V. (2001): On characteristics times in generalized thermoelasticity. - J. Applied Math, vol.68, pp.816-817.
  • Voigt W. (1887): Theortische Student Über die Elasticitats Verhalinisse Krystalle. - Abh. Ges. Wiss. Goettingen 34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0023-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.