PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proper feedback compensators for a strictly proper plant by polynomial equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We review the polynomial matrix compensator equation XlDr + YlNr = Dk (COMP), e.g. (Callier and Desoer, 1982, Kučera, 1979; 1991), where (a) the right-coprime polynomial matrix pair (Nr,Dr) is given by the strictly proper rational plant right matrix-fraction P = NrD-1 r , (b) Dk is a given nonsingular stable closed-loop characteristic polynomial matrix, and (c) (Xl, Yl) is a polynomial matrix solution pair resulting possibly in a (stabilizing) rational compensator given by the left fraction C = X-1 l Yl. We recall first the class of all polynomial matrix pairs (Xl, Yl) solving (COMP) and then single out those pairs which result in a proper rational compensator. An important role is hereby played by the assumptions that (a) the plant denominator Dr is column-reduced, and (b) the closed-loop characteristic matrix Dk is row-column-reduced, e.g., monically diagonally degree-dominant. This allows us to get all solution pairs (Xl, Yl) giving a proper compensator with a row-reduced denominator Xl having (sufficiently large) row degrees prescribed a priori. Two examples enhance the tutorial value of the paper, revealing also a novel computational method.
Rocznik
Strony
493--507
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Department of Mathematics, University of Namur (FUNDP), Rempart de la Vierge 8, B–5000 Namur, Belgium
autor
  • ÚTIA, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, POB 18, 18208 Prague
Bibliografia
  • [1] Antoniou E.N. and Vardulakis A.I.G. (2005): On the computation and parametrization of proper denominator assigning compensators for strictly proper plants. — IMA J. Math. Contr. Inf., Vol. 22, pp. 12–25.
  • [2] Antsaklis P.J. and Gao Z. (1993): Polynomial and rational matrix interpolation theory and control applications. — Int. J. Contr., Vol. 58, No. 2, pp. 346–404.
  • [3] M. Athans and P. L. Falb (1966): Optimal Control.—New York: McGraw-Hill.
  • [4] Bitmead R.R., Kung S.-Y., Anderson B.D.O. and Kailath T. (1978): Greatest common divisors via generalized Sylvester and Bezout matrices. — IEEE Trans. Automat. Contr., Vol. 23, No. 7, pp. 1043–1047.
  • [5] Callier F.M. (2000): Proper feedback compensators for a strictly proper plant by solving polynomial equations. — Proc. Conf. Math. Models. Automat. Robot., MMAR, Międzyzdroje, Poland, Vol. 1, pp. 55–59.
  • [6] Callier F.M. (2001): Polynomial equations giving a proper feedback compensator for a strictly proper plant. — Prep. 1st IFAC/IEEE Symp. System Structure and Control, Prague, (CD-ROM).
  • [7] Callier F.M. and Desoer C.A. (1982): Multivariable Feedback Systems. —New York: Springer.
  • [8] Emre E. (1980): The polynomial equation QQc + RPc = Φ with applications to dynamic feedback. — SIAM J. Contr. Optim., Vol. 18, No. 6, pp. 611–620.
  • [9] Francis B.A. (1987): A Course in H∞ Control Theory. —New York: Springer.
  • [10] Fuhrmann P.A. (1976): Algebraic system theory: An analyst’s point of view.—J. Franklin Inst., Vol. 301, No. 6, pp. 521–540.
  • [11] Hagadoorn H. and Readman M. (2004): Coupled Drives, Part 1: Basics, Part 2: Control and Analysis. — Available at www.control-systems-principles.co.uk.
  • [12] Kailath T. (1980): Linear Systems. — Englewood Cliffs, N.J.: Prentice-Hall.
  • [13] Kraffer F. and Zagalak P. (2002): Parametrization and reliable extraction of proper compensators. — Kybernetika, Vol. 38, No. 5, pp. 521–540.
  • [14] Kučera V. (1979): Discrete Linear Control: The Polynomial Equation Approach. —Chichester, UK: Wiley.
  • [15] Kučera V. (1991): Analysis and Design of Discrete Linear Control Systems. —London: Prentice-Hall.
  • [16] Kučera V. and Zagalak P. (1999): Proper solutions of polynomial equations. — Prep. 14th IFAC World Congress, Beijing, Vol. D, pp. 357–362.
  • [17] Messner W. and Tilbury D. (1999): Example: DC Motor Speed Modeling, In: Control Tutorials for MATLAB and Simulink: A Web-Based Approach (W. Messner and D. Tilbury, Eds.). — Englewood Cliffs, N.J.: Prentice-Hall, Available at www.engin.umich.edu/group/ctm/examples/motor/motor.html.
  • [18] ProTyS, Inc. (2003): Personal communication.
  • [19] Rosenbrock H.H. and Hayton G.E. (1978): The general problem of pole assignment. — Int. J. Contr., Vol. 27, No. 6, pp. 837–852.
  • [20] Vidyasagar M. (1985): Control System Synthesis. —Cambridge MA: MIT Press.
  • [21] Wolovich W.A. (1974): Linear Multivariable Systems. — New York: Springer.
  • [22] Zagalak P. and Kučera V. (1985): The general problem of pole assignment. — IEEE Trans. Automat. Contr., Vol. 30, No. 3, pp. 286–289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0018-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.