Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed online by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
Rocznik
Tom
Strony
369--381
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering, University of Skikda, Al-Hadaik Rd., P.B.: 26, Skikda 21000, Algeria
autor
- Department of Electronics, Mentouri University, Zerzara, Ain-Bey Rd., Constantine 25000, Algeria
autor
- Department of Cybernetics, University of Reading, Whiteknights, Reading RG6 6AY, U.K.
Bibliografia
- [1] Becerra V.M., Roberts P.D. and Griffiths G.W. (1998): Novel developments in process optimisation using predictive control.— J. Process Contr., Vol. 8, No. 2, pp. 117–138.
- [2] Becerra V.M., Abu-el-zeet Z.H. and Roberts P.D. (1999): Integrating predictive control and economic optimisation. — Comput. Contr. Eng. J., Vol. 10, No. 5, pp. 198–208.
- [3] Chen C.C. and Shaw L. (1982): On receding horizon feedback control. —Automatica, Vol. 18, No. 3, pp. 349–352.
- [4] Chen H. and Allgöwer F. (1998): A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability.— Automatica, Vol. 34, No. 10, pp. 1205–1217.
- [5] De Nicolao G., Magni L. and Scattolini R. (1997): Stabilizing receding-horizon control of nonlinear time-varying systems. — IEEE Trans. Automat. Contr., Vol. 43, No. 7, pp. 1030–1036.
- [6] Eaton J.W. and Rawlings J.B. (1992): Model predictive control of chemical processes. —Chem. Eng. Sci., Vol. 47, No. 4, pp. 705–720.
- [7] Garces F., Becerra V.M., Kambhampati C. and Warwick K. (2003): Strategies for Feedback Linearisation: A Dynamic Neural Network Approach. —London: Springer.
- [8] Garcia C.E., Prett D.M. and Morari M. (1989): Model predictive control: Theory and practice—A survey. — Automatica, Vol. 25, No. 3, pp. 335–347.
- [9] Hornik K., Stinchcombe M. and White H. (1989): Multilayer feedforward networks are universal approximators. — Neural Networks, Vol. 2, No. 5, pp. 359–366.
- [10] Hunt K.J., Sbarbaro D., Zbikowski R. and Gawthrop P.J. (1992): Neural networks for control systems: A survey. — Automatica, Vol. 28, No. 6, pp. 1083–1112.
- [11] Kadirkamanathan V. and Niranjan M. (1993): A function estimation approach to sequential learning with neural networks. — Neural Comput., Vol. 5, No. 6, pp. 954–975.
- [12] Kambhampati C., Delgado A., Mason J.D. and Warwick K. (1997): Stable receding horizon control based on recurrent networks. — IEE Proc. Contr. Theory Applic., Vol. 144, No. 3, pp. 249–254.
- [13] Keerthi S.S. and Gilbert E.G. (1988): Optimal, infinite-horizon feedback laws for a general class of constrained discretetime systems. — J. Optim. Theory Applic., Vol. 57, No. 2, pp. 265–293.
- [14] Kwakernaak H. and Sivan R. (1972): Linear Optimal Control Systems. — New York: Wiley.
- [15] Magni L., De Nicolao G., Magnani L. and Scattolini R. (2001): A stabilizing model-based predictive control algorithm for nonlinear systems. — Automatica, Vol. 37, No. 9, pp. 1351–1362.
- [16] Mayne D.Q. and Michalska H. (1990): Receding horizon control of nonlinear systems.—IEEE Trans. Automat. Contr., Vol. 35, No. 7, pp. 814–824.
- [17] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: Stability and optimality. — Automatica, Vol. 36, No. 6, pp. 789–814.
- [18] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. — IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623–1633.
- [19] Morari M. and Lee J.H. (1999): Model predictive control: Past, present and future.—Comput. Chem. Eng., Vol. 23, No. 4, pp. 667–682.
- [20] Narendra K.S. and Parthasarathy K. (1990): Identification and control of dynamical using neural networks. — IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4–27.
- [21] Parisini T. and Zoppoli R. (1995): A receding-horizon regulator for nonlinear systems and a neural approximation. — Automatica, Vol. 31, No. 10, pp. 1443–1451.
- [22] Parisini T., Sanguinetti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. — Int. J. Contr., Vol. 70, No. 3, pp. 341–362.
- [23] Park Y.M., Choi M.S. and Lee K.W. (1996): An optimal tracking neuro-controller for nonlinear dynamic systems. — IEEE Trans. Neural Netw., Vol. 7, No. 5, pp. 1099–1110.
- [24] Richalet J. (1993): Industrial applications of model based predictive control. — Automatica, Vol. 29, No. 5, pp. 1251–1274.
- [25] Richalet J., Rault A., Testud J.L. and Papon J. (1978): Model predictive heuristic control: Application to industrial processes. —Automatica, Vol. 14, No. 2, pp. 413–428.
- [26] Yingwei L., Sundararajan N. and Saratchandran P. (1997): Identification of time-varying nonlinear systems using minimal radial basis function neural networks. — IEE Proc. Contr. Theory Appl., Vol. 144, No. 2, pp. 202–208.
- [27] Zhihong M., Wu H.R. and Palaniswami M. (1998): An adaptive tracking controller using neural networks for a class of nonlinear systems.—IEEE Trans. Neural Netw., Vol. 9, No. 5, pp. 947–954.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0018-0006