Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with a class of uncertain systems with time-varying delays and norm-bounded uncertainty. The stability and stabilizability of this class of systems are considered. LinearMatrix Inequalities (LMI) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established.
Rocznik
Tom
Strony
321--329
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
- L.A.I.I, ESIP, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
autor
- Automatic Control Research Unit, Electrical Engineering Department, Sfax National Engineering School, B.P. 805, Route Menzel Chaker Km 0.5, 3038 Sfax, Tunisia
autor
- L.A.I.I, ESIP, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Bibliografia
- [1] Boukas E.-K. and Liu Z.-K. (2002): Deterministic and Stochastic Time-Delay Systems. — Boston: Birkhäuser, Marcel Dekker.
- [2] de la Sen M. (2002): Stability test for two common classes of linear time-delay systems and hybrid systems.—Lutianian Math. J., Vol. 42, No. 2, pp. 153–168.
- [3] Hale J.-K. (1977): Theory of Functional Differential Equations. —New York: Springer.
- [4] Hmamed A. (1997): Further results on the robust stability of uncertain linear systems including delayed perturbations. —Automatica, Vol. 33, No. 9, pp. 1763–1765.
- [5] Kim J.-H. (2001): Delay and its time derivative dependent robust stability of time-delayed linear systems with uncertainty. — IEEE Trans. Automat. Contr., Vol. 46, No. 5, pp. 789–792.
- [6] Lee B. and Lee J.-G. (1999): Robust stability and stabilization of linear delayed systems with structured uncertainty. — Automatica, Vol. 35, No. 6, pp. 1149–1154.
- [7] Lee B. and Lee J.-G. (2000): Robust control of uncertain systems with input delay and input sector nonlinearity. — Proc. 39th IEEE Conf. Decision and Control, North Sydney, Australia, Vol. 5, pp. 4430–4435.
- [8] Li X. and de Souza C.-E. (1996): Criteria for robust stability of uncertain linear systems with time-varying state delays. — Proc. 13th IFAC World Congress, San Francisco, CA, pp. 137–142.
- [9] Li X. and de Souza C.-E. (1997a): Criteria for robust stability of uncertain linear systems with state delays. —Automatica, Vol. 33, No. 9, pp. 1657–1662.
- [10] Li X. and de Souza C.-E. (1997b): Delay dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach. — IEEE Trans. Automat. Contr., Vol. 42, No. 8, pp. 1144–1148.
- [11] Li X., Fu M., and de Souza C.-E. (1992): H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback. — IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp. 1253–1256.
- [12] Mahmoud M.-S. (2000): Robust Control and Filtering for Time-Delay Systems. — New York: Marcel-Dekker.
- [13] Marchenko V.-M., Borkovskaja I.-M. and Jakimenko A.-A. (1996): Linear state-feedback for after-effect systems: stabilization and modal control. — Proc. 13th IFAC World Congress, San-Francisco, USA, pp. 441–446.
- [14] Niculescu S.-I., de Souza C.-E., Dion J.-M. and Dugard L. (1994): Robust stability and stabilization of uncertain linear systems with state delay: Single dealy case. — Proc. IFAC Symp. Robust Control Design, Rio de Janero, Brazil, pp. 469–474.
- [15] Su J.-H. (1994): Further results on the robust stability of linear systems with a single time-delay. — Syst. Contr. Lett., Vol. 23, pp. 375–379.
- [16] Su T.J. and Huang C.-G. (1992): Robust stability of delay dependence for linear systems. — IEEE Trans. Automat. Contr., Vol. 37, No. 10, pp. 1656–1659.
- [17] Sun Y.J., Hsieh J.-G. and Yang H.-C. (1997): On the stability of uncertain systems with multiple time-varying delays. — IEEE Trans. Automat. Contr., Vol. 42, No. 1, pp. 101–105.
- [18] Wang S.-S., Chen B.-S. and Lin T.-P. (1987): Robust stability of uncertain time-delay systems. — Int. J. Contr., Vol. 46, No. 4, pp. 963–976.
- [19] Xu B. (1995): On delay-independent stability of large scale systems with time-delays. — IEEE Trans. Automat. Contr., Vol. 40, No. 5, pp. 930–933.
- [20] Xu B. and Liu Y. (1994): An improved Razimukhin-type theorem and its applications. — IEEE Trans. Automat. Contr., Vol. 39, No. 4, pp. 839–841.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0018-0001