PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biomechanical analysis of human pelvis under muscolo-skeletal load using 3D finite element method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During walking, the human pelvis is Ioaded by hip contact force and 22 muscle forces. Due to its complex geometry and structure, biomechanics of the human pelvis is complicated. A three-dimensionaI finite element model of the fulI pelvis was developed and the stress and deformation pattern was mapped, considering musculoskeletal loading, during 8 phases of a normal walking cycIe. The cortical and trabecular bones were modeled with shell-solid elements. The full model consisted of 71 674 tetrahedral and 17 264 shell elements (four-noded), through 16429 nodes. An algorithm was aIso developed to calculate the components and direction of 22 muscle forces, considering the origin, insertion points and change of femur position, relative to the pelvis during walking. Stress contour maps revealed that the zones and magnitudes of maximum von-Mises stresses (28 to 38 MPa for the cortical bone and 1.3 to 1.7 MPa for the trabecular bone) varied from phase to phase during walking. AIso the average phase wise variations for the resultant displacement were 0.1 to 0.5 mm. These results may be used approximately for a cIinical comparison between the normal pelvis and the effectiveness of different pelvic fracture fixation modalities.
Rocznik
Strony
647--665
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Department af Applied Mechanics Bengal Engineering and Science University Shibpur, Hawrah - 711 103, West Bengal, INDIA
  • Department af Applied Mechanics Bengal Engineering and Science University Shibpur, Hawrah - 711 103, West Bengal, INDIA
autor
  • School of Bio-science and Engineering Jadavpur University Kolkata - 700032, INDIA
Bibliografia
  • [1] Bachtar F., Chen X., Hisada T., Saiki K., Hirabayasfi S. and Tsuzuki N. (2003): Finite element analysis of internal fixation for sacroiliac joint in pelvic fractures. - Journal of Japanese Society of Clinical Biomechanics, vol.24, pp.191-196.
  • [2] Bedzinski R and Tyndyk M. (2000): A study of the strain and the stress distribution in the pelvis bone under different load conditions. - Proceedings of 12th Conference of the European Society of Biomechanics, Dublin, pp.335.
  • [3] Bell A.L., Smith R.A., Brown T.D. and Nepola J.V. (1988): Comparative study of the Orthofix and Piusburgh Jrames for external fixation of unstable pelvic ring fractures. - Journal of Orthopaedic Trauma, vol.2, pp.130-138.
  • [4] Bergmann G., Graichen F., Siraky J, Jendrzynski H. and Rohlmann A. (1988): Multichannel strain gauge telemetry for orthopaedic implants. - Journal of Biomechanics, vol.21, pp.169-176.
  • [5] Bergmann G., Graichen F. and Rohlmann A. (1990): Instrumentation of a hip joint prosthesis, In: Implantable Telemetry in Orthopaedics (G. Bergmann, F. Graichen and A. Rohlmann, Ed.). - Berlin: Forschungsvermittlung der Freien Universitat.
  • [6] Bergmann G., Graichen F. and Rohlmann A. (1993): Hip joint loading during and running, measured in two patients.- Journal of Biomechanics, vol.26, pp.969-990.
  • [7] Bergmann G., Deuretzbacher G., Heller M., Graichen F., Rohlmann A., Strauss J. and Duda G.N. (2001): Hip contact forces and gait patterns from routine activities. - Journal of Biomechanics, vol.34, pp.859-871.
  • [8] Carter D.R, Vasu R and Harris W.H. (1982): Stress distributions in the acetabular region - II, effects of cement thickness and metal backing of the total hip acetabular component. - Journal of Biomechanics, vol.15, pp.165-170.
  • [9] Crowninshield R.D., Johnston R'C; Andrews J.G. and Brand RA. (1978): A biomechanical investigation of the human hip, - Journal of Biomechanics, vol.11, pp.75-85.
  • [10] Crowninshield RD. and Brand R.A. (1981): A physiologically based criterion of muscle force prediction in locomotion. - Journal of Biomechanics, vol.14, pp.793-801.
  • [11] Dahners L.E., Jacobs R.R., Jayararnan G. and Cepulo A.J. (1984): A study of external skeletal fixation systems for unstable pelvic fractures. - Journal of Trauma, vol.24, pp.876-881.
  • [12] Dalstra M. and Huiskes R. (1990): The pelvic bone as a sandwich construction; a three-dimensional finite element study. - Proc. ESB, vol.7, pp.B32.
  • [13] Dalstra M., Huiskes R., Odgaard A. and van Erning L. (1993): Mechanical and textural properties of pelvic trabecular bone. - Journal of Biomechanics, vol.26, pp.523-535.
  • [14] Dalstra M. and Huiskes R. (1995): Load transfer across the pelvic bone. - Journal of Biomechanics, vol.28, pp.715-724.
  • [15] Dalstra M., Huiskes R. and van Erning L. (1995): Development and validation of a three-dimensional finite element model of the pelvic bone. - Journal of Biomechanical Engineering, vol.117, pp.272-278.
  • [16] Delp S.L. (1990): Surgery simulation: computer graphics system to analyze and design musculoskeletal reconstruction of the lower limb. - PhD dissertation, Department of Mechanical Engineering, Standford University, Standford.
  • [17] Dostal W.F. and Andrews J.G. (1981): A three-dimensional biomechanical model oj hip musculature. - Journal of Biomechanics, vol.14, pp.802-812.
  • [18] Dowson D., Seedhom B.B. and Johnson G.R. (1980): Bio-mechanics of the lower limb, In: An Introduction to the Bio-mechanics of Joints and Joint Replacement (D. Dowson and V. Wright, Ed.). - London: Mechanical Engineering Publications Ltd.
  • [19] Garcia J.M., Doblare M., Seral B., Seral F., Palanca D. and Gracia L. (2000): Three-dimensional finite element analysis of several internal and external pelvis fixations. - Journal of Biomechanical Engineering, vol.122, pp.516-522.
  • [20] Goel V.K., Valliappan S. and Sevensson N.L. (1978): Stresses in the normal pelvis. - Computers in Biology and Medicine, vol.8, pp.91-104.
  • [21] Gunterberg B., Goldie L and Slatis P. (1978): Fixation of pelvic fractures and dislocations. An experimental studyon the loading of pelvic fractures and sacro-iliac dislocations after external compressionfixation. - Acta Orthop Scand, vol.49, pp.278-286.
  • [22] Hall SJ. (1999): Basic Biomechanics. - Singapore: McGraw-Hill International.
  • [23] Jacob H.A.C., Huggler A.H. Dietschi C. and Schreiber A. (1976): Mechanical function of subchondral bone as experimentally determined on the acetabulam of human pelvis. - Journal of Biomechanics, vol.9, pp.625-627.
  • [24] Jensen C.R., Schultz G.W. and Bangerter B.L. (1984): Applied Kinesiology and Biomechanics. - Singapore: McGraw-Hill Book Company.
  • [25] John A. and Orantek P. (2002): Computer aided analysis of stress and strain distribution in human pelvic bone. - Proceedings of 5th World Congress on Computational Mechanics, Viena, Austria.
  • [26] Koeneman J.B., Hansen T.M. and Beres K. (1989): Three-dimensional finite element analysis of the hip joint. - Transaction of Orthopedic Research Society, vol.14, pp.223.
  • [27] Majumder S., Roychowdhury A. and Pal S. (2004): Dynamic response of the pelvis under side impact load - a three- dimensional finite element approach. - International Journal of Crashworthiness, vol.9, pp.89-109.
  • [28] Oonishi H., Isha H. and Hasegawa T. (1983): Mechanical analysis of human pelvis and its application to the articular hip joint- by means of three-dimensional finite element method. - Journal of Biomechanics, vol.16, pp.427-444.
  • [29] Ozkaya N. and Nordin M. (1991): Fundamentals of Biomechanics-Equilibrium, Motion, and Deformation. - New York: Van Nostrand Reinhold.
  • [30] Pedersen D.R. Crowninshield R.D., Brand R.A. and Johnston R.C. (1982): An axisymmetric model of acetabular components in total hip arthroplasty. - Journal of Biomechanics, vol.15, pp.305-315.
  • [31] Pedersen D.R., Brand R.A. and Davy D.T. (1997): Pelvic muscle and acetabular contact Jorces during gait. - Journal of Biomechanics, vol.30, pp.959-965.
  • [32] Rapperport DJ., Carter D.R. and Schurrnan DJ. (1985): Contact finite element stress analysis of the hip joint. - Journal of Orthopaedic Research, vol.3, pp.435-446.
  • [33] Renaudin F., Guillemot H., Lavaste F. and Skalli W. (1993): A 3D finite element model of pelvis inside impact. - Proceedings of the 37th Stapp Car Crash Conference, Washington, DC, pp.249-259.
  • [34] Reynolds H., Snow C. and Young J. (1982): Spatial geometry of the human pelvis. - Memorandum Report no. AAC- 119-81-5. US Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine.
  • [35] Rieger H., Winekler S., Wetterkamp D. and Overbeck J. (1996): Clinical and biomechanical aspects of extemal fixation of the pelvis. - Clinical Biomechanics, vol. 11, pp.322-327.
  • [36] Simonian P.T., Routt M.L. Jr, Harrington RM., Mayo K.A. and Tencer A.F. (1994): Biomechanical simulation of the anteroposterior compression injury of the pelvis. An understanding of instability and fixation. - Clinical Orthopaedics, vol.309, pp.245-256.
  • [37] Simonian P.T. and Routt M.L. Jr. (1997): Biomechanics of pelvic fixation. - Orthopaedic Clinics of North America, vol.28, pp.351-367.
  • [38] Thibodeau G.A. and Patton K.T. (1994): Anthonoy's Textbook of Anatomy & Physiology. - St. Louis: Mosby-Year Book Inc.
  • [39] Vasu R., Carter D.R. and Harris W.H. (1982): Stress distributions in the acetabular region - l, before and after total joint replacement. - Journal of Biomechanics, vol.15, pp.155-164.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0015-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.