PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Cavitation effects on the dynamics of journal bearings

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical procedure incorporating cavitation effects on the dynamics of journal bearings is presented. A two-dimensional linear stability analysis considering the fluid flow in both full film and cavitation regions for a plain cylindrical journal bearing and four multi-lobe bearings are presented. The Lund’s infinitesimal perturbation procedure is applied to Elrod’s universal equation for evaluation of unsteady pressure gradients. Based on JFO theory, the pressure distribution, film rupture, and reformation boundaries can be obtained using Elrod’s universal equation, for a given operating position of the journal. In this work, it is assumed that for infinitesimal perturbation of journal about equilibrium position, the film rupture and film reformation boundaries are same as those obtained for steady state. However, the unsteady pressure gradients in the full film region are evaluated taking into consideration the perturbed flow parameters in the cavitation region, i.e., at both rupture and reformation boundaries. The linearized stiffness and damping coefficients, whirl frequency ratio, and threshold speed for various values of eccentricity and L/D ratios are obtained for a plain cylindrical journal bearing with an axial groove along the load line. Measured data of dynamic coefficients for a 120° partial arc bearing are chosen for comparison with this work. Results show good agreement between the theoretical and experimental results. Results of stiffness and damping coefficients are presented for two-axial groove, elliptical, three-lobe and offset cylindrical bearing for various L/D and eccentricity ratios. A transient analysis of submerged journal bearing incorporating the mechanism of shear between the liquid sublayer and air cavity in the cavitation zone is also presented. Using the mass conservation principles, Elrod’s universal equation is modified to take into consideration the shear of air cavity in the cavitation zone. Results of transient response for the submerged journal bearing using the present approach are compared with the Elrod’s universal equation based on the striated flow in the cavitation region. The limit cycle journal motion using the present approach predicts higher eccentricity ratios.
Słowa kluczowe
Rocznik
Strony
515--526
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • D.E. Bently & A. Muszynska Endowed Chair Rotor-Bearing Dynamics and Diagnostics Laboratory Fenn College of Engineering Cleveland State University Cleveland, Ohio 44115-2425, U.S.A.
Bibliografia
  • [1] Allaire, P.E. (1979): Design of Journal Bearings for High Speed Rotating Machinery, In: Fundamentals of the Design of Fluid Film Bearings, ASME Publications, New York, pp. 45-83.
  • [2] Braun, MJ., and Hendricks, R.C. (1984): An Experimental Investigation of the Vaporous/ Gaseous Cavity Characteristics of an Eccentric Journal Bearing. - STLE Tribology Transactions, vol.27, pp. 1-14.
  • [3] Brewe, D.E. (1986): Theoretical Modeling of Vapor Cavitation in Dynamically Loaded Journal Bearings. - ASME Journal of Lubrication Technology, vol. 108, pp. 628-638.
  • [4] Dowson, D., and Taylor, C.M. (1974): Fundamental Aspects of Cavitation in Bearings, Cavitation and Related Phenomena in Lubrication. - Proceedings of the 1 st Leeds-Lyon Symposium, I Mech E, pp. 15-28.
  • [5] Elrod, H.G. (1981): A Cavitation Algorithm. - ASME Journal of Lubrication Technology, vol.103, pp. 350-354.
  • [6] Elrod, H.G. and Vijayaraghavan, D. (1994): A Stability Analysis for Liquid Lubricated Bearings Incorporating the Effects of Cavity Flow, Part I: Classical ID Bearing. - ASME Journal of Tribology, vol.116, pp. 330-333.
  • [7] Elrod, H.G. and Vijayaraghavan, D. (1995): A Stability Analysis for Liquid Lubricated Bearings Incorporating the Effects of Cavity Flow, Part II: Journal Bearing with Central Groove. - ASME Journal of Tribology, vol.117, pp. 365-367.
  • [8] Etsion, J., and Ludwig, L. (1982): Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings. - ASME Journal of Lubrication Technology, vol.104, pp. 157-163.
  • [9] Gliencke, J., Han, D.C., and Leonhard, M. (1980): Practical Determination and Use of Bearing Dynamic Coefficients.- Tribology International, vol.l3, pp. 297-309.
  • [10] Goodwin, MJ., Ogrodnik, PJ., Roach, M.P., and Fang, Y. (1997): Calculation and Measurement of the Stiffness and Damping Coefficients for a Low Impedance Hydrodynamic Bearing. - ASME Journal of Tribology, vol.119, pp. 57-63.
  • [11] Groper, M., and Etsion, I. (2001): The Effect of Shear Flow and Dissolved Gas Diffusion on the Cavitation in a Submerged Journal Bearing. - ASME Journal of Tribology, vol.123, pp. 494-500.
  • [12] Kostrzewsky, GJ., Flack, R.D., and Barrett, L.E. (1998a): Comparison Between Measured and Predicted Performance of a Two-Axial Groove Journal Bearing, - STLE Tribology Transactions, vol.39, pp. 571-578.
  • [13] Kostrzewsky, GJ., Taylor, D.V., Flack, R.D., and Barrett, L.E. (1998b): Theoretical and Experimental Dynamic Characteristics of a Highly Preloaded Three-Lobe Journal Bearing, - STLE Tribology Transactions, vol.41 , pp. 392-398.
  • [14] Lund, J.W., and Thomsen, K.K. (1978): Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings, In: Topics in Fluid Bearing and Rotor Bearing System Design and Optimization, ASME, New York, pp. 1-28.
  • [15] Lund, J.W. (1987): Review of the concept for Dynamic Coefficients for Fluid Film Journal Bearings. - ASME Journal of Tribology, vol.109, pp. 38-41.
  • [16] Pinkus, O. (1956) Analysis of Elliptical Bearings. - ASME Transactions, vol.78, pp. 965-973.
  • [17] Pinkus, O. (1959): Analysis and Characteristics of Three Lobe Bearings. - ASME Journal of Basic Engineering, vol. 81, pp. 49-55.
  • [18] Someya, T. (1989): Journal Bearing Design Data Book. - Springer- Verlag, Berlin.
  • [19] Swanson, E.E., and Kirk, R.G. (1997): Survey of Experimental Data for Fixed Geometry Hydrodynamic Journal Bearings. - ASME Journal of Tribology, vol.119, pp. 704-710.
  • [20] Szeri, A. Z. (1998): Fluid Film Lubrication: Theory and Design. - Cambridge University Press.
  • [21] Vijayaraghavan, D., and Brewe, D.E. (1992): Frequency Effects on the Stability of a Journal Bearing for Periodic Loading. - ASME Journal of Tribology, vol.114, pp. 107-115.
  • [22] Vaidyanathan, K., and Keith, T.G. (1989): Numerical Prediction of Cavitation in Noncircular Journal Bearings. - STLE Tribology Transactions, vol.32, pp. 215-221.
  • [23] Vijayaraghavan, D., and Keith, T.G. (1990): An Efficient, Robust and Time Accurate Numerical Scheme Applied to Cavitation Algorithm. - ASME Journal of Tribology, vol.112, pp. 44-51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0015-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.