Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The thermosolutal instability of a compressible Rivlin-Ericksen viscoelastic fluid is predicted for a layer heated and soluted from below in the presence of the vertical magnetic field to include the effect of Hall currents. For the case of stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like a Newtonian viscous fluid. The Hall currents found to hasten the onset of thermosolutal instability whereas the compressibility, stable solute gradient and magnetic field postpone the onset of thermosolutal instability. Also, the dispersion relation is analyzed numerically and results are depicted graphically. The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system, which were nonexistent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.
Rocznik
Tom
Strony
329--343
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
- Department of Applied Sciences, National Institute of Technology, Deemed University Hamirpur (H.P.)-177 005, INDIA
autor
- Department of Applied Sciences, National Institute of Technology, Deemed University Hamirpur (H.P.)-177 005, INDIA
autor
- Department of Applied Sciences, National Institute of Technology, Deemed University Hamirpur (H.P.)-177 005, INDIA
autor
- Department of Mathematics, Himachal Pradesh University Summer Hill, Shimla-171 005, INDIA
Bibliografia
- [1] Bhatia P.K. and Steiner J.M. (1972): Convective instability in a rotating viscoelastic fluid layer. - Z. Angew. Math. Mech., vol.52, pp.321-327.
- [2] Bhatnagar P.L. and Rathna S.L. (1963): Flow of fluid between two rotating coaxial cones having (he same vertex. - Q. J. Mech. App J. Math., vol.16, pp.329-346.
- [3] Chandrasekhar S. (1981): Hydrodynamic and Hydromagnetic Stability. - New York: Dover Publication.
- [4] Coleman B.O. and Markovitz H. (1964): Normal stress effects in second-order fluids. – J. App J. Phys., vol.35, pp.1-9.
- [5] Dandapat B.S. and Gupta A.S. (1975): Instability of a horizontal Layer of viscoelastic liquid on an osculating plane. - J. Fluid Mech., vol.72, pp.425-432.
- [6] Dunn J.E. and Fosdick R.L. (1974): Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. - Arch. Ration. Mech. Anal., vol.56, pp.191-252.
- [7] Dunn J.E. and Rajagopal K.R. (1995): Fluids of differential type: Critical review and thermodynamic analysis. - Int. J. Eng. Sci., vol.33, NO.5, pp.689-729.
- [8] Gupta A.S. (1967): Hall effects on thermal instability. - Rev. Roumaine Math. Pures. Appl., vol.12, pp.665-677.
- [9] Joseph D.D. (1976): Stability of Fluid Motions. - Berlin: Springer-Verlag, vol.1 and 2.
- [10] Kaloni P.N. (1989): Some remarks on "Useful theorems for the second order fluid". - J. Non-Newtonian Fluid Mech., vol.31, NO.l, pp.115-120.
- [11] Markovitz H. and Coleman B. O. (1964): Incompressible second-order fluids. - Adv. Appl. Mech., vol.8, pp.69-101.
- [12] Muller I. and Wilmanski K. (1986): Extended thermodynamics of a non-Newtonian fluid. - Rheologica Acta, vol.25, No.4, pp.335-349.
- [13] Phillips O.M. (1991): Flow and Reaction in Permeable Rocks. - Cambridge: Cambridge University Press.
- [14] Rajagopal K.R. (1980): On the decay of vortices in a second grade fluid. - Mechanica, vol.15, pp.185-186.
- [15] Rajagopal K.R. (1981): The flow of a second order fluid between rotating paralel plates. – J. Non-Newtonian Fluid Mech., vol.9, pp.185-190.
- [16] Rajagopal K.R. (1995): On boundary conditions for fluids of the different type, In: Navier-Stokes Equations and Related Non-Linear Problems (A. Sequira, Ed.). - New York: New York Plenum Press.
- [17] Rajagopal K.R. and Gupta A.S. (1981a): On a class of exact solutions to the equations of motion of a second grade fluid. - Int. J. Eng. Sci., vol.19, pp.1009-1014.
- [18] Rajagopal K.R. and Gupta A.S. (1981b): Flow and stability of second grade fluids between two parallel rotating plates. - Arch. Mech., vol.33, pp.663-674.
- [19] Rajagopal K.R. and Gupta A.S. (1984): An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate. - Mechanica, vol.19, pp.158-160.
- [20] Rajagopal K.R., Ruzicka M. and Srinivasa A.R. (1996): On the Oberbeck-Boussinesq approximation. - J. Math. Models Methods Appl. Sci., vol.6, NO.8, pp.1157 -1167.
- [21] Rajagopal K.R. and Kaloni P.N. (1989): Some remarks on boundary conditions for the flow of fluids of the differential type, In: Continuum Mechanics and its Applications (G.A.C. Graham and S.K. Malik, Eds.). - New York: New York Hemisphere Press.
- [22] Rathna S.L. (1962a): Flow of a particular class of non-Newtonian fluids near a rotating disc. - Z. Angew. Math. Mech., vol.42, pp.231-237.
- [23] Rathna S.L. (1962b): Slow motion of a non-Newtonian liquid past a sphere. - Q. 1. Mech. Appl. Math., vol.15, pp.427-434.
- [24] Rivlin R.S. and Ericksen J.L. (1955): Stress-deformation relations for isotropic materials. - Rational Mech. Anal., vol.4, pp.323-329.
- [25] Rudraiah N., Kaloni P.N. and Radhadevi P.V. (1989): Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. - Rheol. Acta, vol.28, No.l, pp.48-53.
- [26] Sharma RC. (1976): Effect of rotation on thermal instability of a viscoelastic fluid. - Acta Physica Hungarica, vol.40, pp.11-17.
- [27] Sharma R.C. and Kumar P. (1996): Thermal instability of Rivlin-Ericksen elasticoviscous fluid in presence of uniform rotation. - Z. Naturforch., vol.51a, pp.821-824.
- [28] Sharma R.C. and Kumar P. (1997): Thermal instability of Rivlin-Ericksen elasticoviscous fluid in hydromagnetics. - Z. Naturforch., vol.52a, pp.369-371.
- [29] Sharma R.C., Sunil and Suresh Chand, (2000): Hall effect on thermal instability of Rivlin-Ericksen fluid. - Indian Journal of Pure and Applied Mathematics, vol.3l, No 1, pp.49-59.
- [30] Sherman A. and Sutton G.W. (1962): Magnetohydrodynamics. - Evanston, Illinois: Northwestem Univ. Press.
- [31] Siddheshwar P.G. and Srikishna C.V. (2003): Linear and non-linear analyses of convection in a Rivlin-Ericksen fluid- saturated porous medium. - Int. J. Appl. Mech. Eng., vol.8, No.4, pp.677-692.
- [32] Sokolov M. and Tanner R.I. (1972): Convective stability of a general viscoelastic fluid heated from below. - Phys. Fluids, vo1.15, pp.534-539.
- [33] Spiegel E.A. and Veronis G. (1960): On the Boussinesq approximation for a compressible fluid. - Astrophys. J., vol.131, p.442.
- [34] Srikrishna C.V. (2001): Effects of non-inertial acceleration on the onset of convection in a second-order fluid-saturated porous medium. - Int. J. Eng. Sci., vol.39, pp.599-609.
- [35] Sunil and Singh P. (2000): Thermal instability of a porous medium with relaxation and inertia in the presence of Hall effects. - Archive of Applied Mechanics, vol.70, No.8/9, pp.649-658.
- [36] Veronis G. (1965): On finite amplitude instability in thermohaline convection. - J. Marine Res., vol.23, pp.1-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0013-0061