Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A numerical solution for the effect of a small but fluctuating gravitational field, characteristic of g-jitter, on the free convection boundary layer flow near the forward stagnation point of a two-dimensional symmetric body resulting from a step change in its surface temperature and immersed in a micropolar fluid is presented in this paper. Both the cases when the spin gradient on the wall is zero and non-zero are considered. The transformed non-similar boundary layer equations are solved numerically by a very efficient implicit finite-difference scheme known as the Keller-box method to investigate the effects on the skin friction and on the rate of heat transfer of variations in the forcing amplitude, a, forcing frequency, 'omega', and micropolar parameter, K. The results are given for a value of the Prandt number Pr=0.7. It has been found that these parameters affect considerably the considered flow characteristics. A comparison with earlier results for a Newtonian fluid (K=0) shows a good agreement.
Rocznik
Tom
Strony
311--328
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, University of Technology 81310 Johor Bahru, Johor, MALAYSIA
autor
- Department of Mathematics, University of Technology 81310 Johor Bahru, Johor, MALAYSIA
autor
- Faculty of Mathematics, University of Cluj R-3400 Cluj, CP 253, ROMANIA
Bibliografia
- [1] Alexander J.I..D. (1990): Low-gravity experiment to residual acceleration. - A review Microgravity Sci. Techno. III, vol.2, pp.52-68.
- [2] Amin N. (1988): The effect of g-jitteron heat transfer. - Proc. R. Soc. London, vol.A 419, pp.151-ln.
- [3] Antar B.N. and Nuotio-Antar V.S. (1993): Fundamentals of Law Gravity Fluid Dynamics and Heat Transfer. - Florida, Boca Raton: (CRC Press).
- [4] Ariman T., Turk M.A. and Sylvester N.D. (1973): Microcontinuum fluid mechanics - A review. - Int. J. Eng. Sci., vol.J I, pp. 05-930.
- [5] Ariman T., Turk M.A. and Sylvester N.D. (1974): Application of microcontinuum fluid mechanics. - Int. J. Eng. Sci., vol.12, pp.273-293.
- [6] Cebeci T. and Bradshaw P. (1984): Physical and Computational Aspects of Convective Heat Transfer. - New York: Springer.
- [7] Chamkha Ali J. (2003): Of heat generation on g-jitter induced natural convection flow in a channel with isothermal or isoflux walls. - Heat Mass Transfer, vol.39, pp.553-560.
- [8] Eringen A.C. (1966): Theory of micropolar fluids. - J. Math. Mech., vol.16, pp.1-18.
- [9] Eringen A.C. (1971): Theory of thermomicropolar fluids. - J. Math. Analysis Appl., vol.38, pp.480-496.
- [10] Eringen A.C. (2001): Microcontinuum Field Theories. II: Fluent Media. - New York: Springer.
- [11] Farooq A. and Homsy G.M. (1994): Streaming flows due to g-jitter induced natural convection. - l Fluid Mech., vol.271, pp.351-378.
- [12] Gorla R.S.R. (1983): Micropolar boundary layer at a stagnation point. - Int. J. Eng. Sci., vol.21, pp.25-34.
- [13] Ouram G.S. and Smith C. (1980): Stagnation flows of micropolar fluids with. strong and weak interactions. - Comp. Math. with Applics., vol.6, pp.213-233.
- [14] Hirata K., Sasaki T. and Tanigawa H. (2001): Vibrational effects on convection in a square at zero gravity, - J. Fluid Mech., vol.445, pp.327-344.
- [15] Keller H.B. (1971): A New Difference Scheme for Parabolic Problems. In: Numerical Solutions of Partial Differential Equations (B. Hubbard, Ed.). - New York: Academic Press.
- [16] Kumari M. and Nath G. (1984): Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation point. - Int. J. Eng. Sci., vol.22, pp.755-768.
- [17] Li B.Q. (1996a): G-jitter induced free convection in a transverse magnetie field. - Int, J. Heat Mass Transfer, vol.39, pp.2853-2860.
- [18] Li B.Q. (l996b): The effect of magnetic fields on low frequency oscillating natural convection. - Int. J. Eng. Sci., vol.34, pp. 1369- 1383.
- [19] Lok Y.Y., Phang P., Amin N. and Pop I. (2003a): Unsteady flow of a micropolar fluid near the forward and rear stagnation points. - Int. J. Eng. Sci., vo1.41, pp.173-186.
- [20] Lok Y.Y., Amin N. and Pop J. (2003b): Unsteady boundary layer flow of a micropolar fluid near the rear stagnation point of a plane surface. - Int. J Thermal Sci., vol.42, pp.995-1001.
- [21] Lok Y.Y., Amin N. and Pop J. (2003c): Steady two-dimensional asymmetric stagnation point flow of a micropolar fluid. - J. Appl. Math. Mech. (ZAMM), vol.83, pp.594-602.
- [22] Łukaszewicz G. (1999): Micropolar Fluids: Theory and Application. - Basel: Birkhauser.
- [23] Nelson E.S. (1991): An Examination of Anticipated G-jitter in Space Station and its Effects on Material Processes. - ASA TM 103775.
- [24] Pan B. and Li B.Q. (1998): Effect of magnetic field on oscillating mixed convection. - Int, J. Beat Mass Transfer, vol.1, pp.2705-2710.
- [25] Peddieson J. and McNitt R.P. (1970): Boundary layer theory for a micropolar fluid. - Recent Adv. in Eng. Sci., vol.5, pp. 405-416.
- [26] Peddieson J. (1972): An application of the micropolar fluid model to the calculation of a turbulent shear flow. - Int, J. Eng. Sci., vol.10, pp.23-32.
- [27] Rees D.A.S. and Bassom A.P. (1996): The Blasius boundary layer flow of a micropolar fluid. - Int. J. Eng. Sci., vol.34, pp.113-124.
- [28] Rees D.A.S. and Pop I. (1998): Free convection boundary-layer flow of a micropolar fluid from a vertical plate. - IMA J. Appl. Maths., vol.61, pp.179-197.
- [29] Rees D.A.S. and Pop I. (2000): The effect of g-jitter on vertical free convection boundary-layer in a porous medium. - Int. Comm. Beat Mass Transfer, vol.27, pp. 415-424.
- [30] Rees D.A.S. and Pop I. (2001a): The effect of g-jitter on free convection near a stagnation point in a porous medium. Int. J. Beat Mass Transfer, vol.44, pp.877 -883.
- [31] Rees D.A.S. and Pop I. (2001 b): G-jitter induced free convection near a stagnation point. - Beat Mass Transfer, vol.37, pp. 403-408.
- [32] Unsworth K. and Chiam T.C (1981): A numerical solution of the two-dimensional boundary layer equations for micropolar fluids. - J. Appl. Math. Mech. (ZAMM), vol.61, pp. 463-466.
- [33] Willson AJ. (1970): Boundary layers in micropolar liquids. - Proc. Camb. Phil. Soc., vol.67, ppA69-476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0013-0060