PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blood flow in a vessel with asymmetric aneurysm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Blood flow in an asymmetrically dilated fusiform artery has been investigated under pulsatile inflow conditions for a full cycle of period T. The coupled non-linear partial differential equations governing the conservation of mass and momentum of a viscous incompressible fluid flow has been numerically analyzed by a time accurate Finite Volume Scheme in an implicit Euler time marching setting. Roe's flux difference splitting of non-linear terms and the pseudo-compressibility technique in the current numerical scheme makes it robust both in space and time. The combined influence of asymmetric geometry and Reynolds number on the hemodynamic factors like WSS, pressure and velocity has been analyzed. Vortices favoring the thrombogenesis are seen to periodically manifest with 3D shedding in the diastolic phase of the flow cycle. During the whole cycle, relatively high WSS is noticed at the head and toe of the aneurysm. Further for the entire period (T) considerable pressures, with relatively large ones on the distal portion, are noticed on the hull of the aneurysm.
Rocznik
Strony
505--521
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
  • Department of Mathematics and Scientific Computing Indian Institute of Technology, Kanpur - 208016, U.P., INDIA
  • Division of High Performance Computing Computer and Information Center, Riken, Wako-shi, 351-0198, JAPAN
autor
  • Department of Mechanical and Systems Engineering NIT, Gokiso-cho, Showa-ku, Nagoya, 466-8555, JAPAN
autor
  • Division of High Performance Computing Computer and Information Center, Riken, Wako-shi, 351-0198, JAPAN
autor
  • Division of High Performance Computing Computer and Information Center, Riken, Wako-shi, 351-0198, JAPAN
Bibliografia
  • [1] Beam R.M. and Warming R.F. (1978): An implicit factored scheme for the compressible Navier-Stok.es eąuations. - AIAA Journal, vol.l5, No.4, pp.393-402.
  • [2] Drexler D.J. and Hoffman A.H. (1985): Steady Flow Through Several Aneurysm Models. - CH2203-8/85/, IEEE Report.
  • [3] Fukushima T., Matsuzawa T. and Homma T. (1989): Visualization and FEA of pulasatile flow in models of AAA. - Biorheology, vol.24, pp. 109-130.
  • [4] Kalula Kayembe N.T., Masakiyo Sasahara and Fumitada Hazama (1984): Cerebral aneuryms and variations in the circle ofWillis. - Stroke, vol.l5, No.5, pp.452-461.
  • [5] Liepsch D.W., Steiger H.J., Poll A. and Reullen H.J. (1987): Hemodynamics stress in lateral saccular aneurysms. - Biorheology, vol.24, No.6, pp.689-710.
  • [6] Liu H. and Kawachi K. (1998): A numerical study of insect flight. - J. Comput. Phys., vol.l46, No.l, pp. 124-156.
  • [7] Perktold L., Gruber K., Kenner T. and Florion H. (1984): Calculation of pulsatile flow and particle paths in an aneurysm model. - Basic Res. Cardiol., vol.79, pp.253-361.
  • [8] Perktold K., Kenner T., Hilbert D., Spork B. and Florion H. (1988): Numerical blood flow analysis in arterial bifurcation with a saccular aneurysm. - Basic Res. Caridiol., vol.83, pp.24-31.
  • [9] Rathish Kumar B.V. and Naidu K.B. (1996): Hemodynamics in Aneurysm. - Computers and Biomedical Research, vol.29,pp. 119-139.
  • [10] Koe P. (1981): Approximate Rieman solvers, parameter vectors and difference scheme. - J. Comput. Phys., vol.43, No.2, pp.357-372.
  • [11] Roger S.E., Kwak D. and Kiris C. (1991): Numerical solution of the incompressible Navier-Stokes equations for steady and unsteady time dependent problems. - AIAA Journal, vol.29, No.4, p.1603.
  • [12] Taylor Ch.A., Hughes T.J. and Zarins C.K. (1998): FE modeling of blood flow in arteries. - Comput. Methods. Appl. Mech. Eng., vol.l58, pp.155-196.
  • [13] Taylor T. and Yamaguchi T. (1994): Three dimensional simulation of blood flow in an abdominal aortic aneurysm - steady and unsteady flow cases. - J. Biomechanical Engineering, vol.l 16, pp.89-97.
  • [14] Wille S.O. (1982): Finite element simulation of pulsatile blood flow patterns in arterial abnormalities, In: Finite Element in Biomechanics (R. Ghallagher, Ed.). - New York: John Wiley, pp.39-62.
  • [15] Womersley J.R. (1955): Method for the calculation of velocity rate of flow and viscous drag in arteries when the pressure gradient is known. - J. Physiol. (London), vol.l27, pp.553-563.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0007-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.