PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blasius flow of viscoelastic fluids: a numerical approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of a fluid elasticity on the characteristics of a boundary layer in a Blasius flow are investigated for a second-grade fluid, and also for a Maxwell fluid. Boundary layer approximations are used to simplify the equations of motion which are finally reduced to a single ODE using the concept of similarity solution. For the second-grade fluid, it is found that the number of boundary conditions should be augmented to match the order of the governing equation. A combination of finite difference and shooting methods are used to solve the governing equations. Results are presented for velocity profiles, boundary layer thickness, and skin friction coefficient in terms of the local Deborah number. An overshoot in velocity profiles is predicted for a second-grade fluid but not for a Maxwell fluid. The boundary layer is predicted to become thinner for the second-grade fluid but thicker for the Maxwell fluid, the higher the Deborah number. By an increase in the level of fluid elasticity, a drop in wall skin friction is predicted for the second-order fluid but not for the Maxwell fluid.
Rocznik
Strony
399--411
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
autor
  • Faculty of Engineering, Department of Mechanical Engineering University of Tehran P.O. Box: 11365-4563, Tehran, IRAN
autor
  • Faculty of Engineering, Department of Mechanical Engineering University of Tehran P.O. Box: 11365-4563, Tehran, IRAN
Bibliografia
  • [1] Acrivos A., Shah M.J. and Peterson E.E. (I960,): Momentum and heat transfer in laminar boundary-layer flow of non- Newtonian fluids past external surfaces. - AIChE J, vol.6, No.2, pp.312-317.
  • [2] Ariel P.D. (1992): A hybrid method for computing the flow of viscoelastic fluids. - Int. Journal for Numerical Methods in Fluids, vol. 14, pp.757-774.
  • [3] Beard D.W. and Walters K. (1964): Elastico-viscous boundary layer flows. - Proc. Camb. Phil Soc., vol.60, pp.667-674.
  • [4] Bhatnager R.K., Gupta G. and Rajagopal K.R. (1995): Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. - Int. J. Non-Linear Mechanics, vol.3, No.3, pp.391-405.
  • [5] Bird R.B., Armstrong R.C. and Hassager O. (1987): Dynamics of Polymeric Liquids. - New York: John Wiley and Sons, Vol.l, 2nd Edition.
  • [6] Coleman B.D. and Noll W. (1960): An approximation theory for functionals, with applications in continuum mechanics. - Archs. Ration. Mech. Analysis, vol.6, pp.355-370.
  • [7] Currie I.G. (1993): Fundamental Mechanics of Fluids. - New York: McGraw-Hill Inc.
  • [8] Davies M.H. (1960): A note on elastico-viscous boundary layer flows. - ZAMP, vol. 17, pp. 189-191.
  • [9] Denn M.M. (1967): Boundary layer flows for a class of elastic fluids. - Chem. Eng. Sci., vol.22, pp.395-405.
  • [10] Dunn J.E. and Rajagopal K.R. (1995): Fluids of differential type: critical review and thermodynamic analysis. - Int. J. Engng., Science, vol.33, pp.689-729.
  • [11] Fosdick R.L. and Rajagopal K.R. (1979): Anomalous features in the model of second-order fluids. - Arch. Ration. Mech. Anal., vol.70, pp. 145-152.
  • [12] Garg V.K. and Rajagopal K.R. (1990): Stagnation point flow of a non-Newtonian fluid. - Mech. Res. Commun., vol. 17, pp.415-421.
  • [13] Garg V.K. and Rajagopal K.R. (1991): Flow of a non-Newtonian fluid past a wedge. - Acta Mech., vol.88, pp. 113-123.
  • [14] Harnoy A. (1979): The role of the fluid relaxation time in laminar elastico-viscous boundary layers. - Rheologica Acta, vol.18, pp.210-216.
  • [15] Harris J. (1977): Rheology and non-Newtonian Flow. - London: Longman.
  • [16] Hassanien I. A. (1996): Flow and heat transfer on a continuous flat surface moving in a parallel free stream of power- law fluid. - App. Modelling, vol.20, pp.779-784.
  • [17] Hassanien I. A. (1992): Flow and heat transfer on a continuous flat surface in a parallel free stream of viscoelastic second-order fluid. - Appl. Sci. Research, vol.49, pp.335-345.
  • [18] Jaluria Y. (1988): Computer Methods for Engineering. - Boston: Allyn and Baycon Inc.
  • [19] Larson R.G. (1988): Constitutive Equations for Polymer Melts and Solutions. - Boston: Butterworths Publishing Co.
  • [20] Massoudi M. (2001): Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge. - Int. J. of Non-Linear Mechanics, vol.36, pp.961-976.
  • [21] Oldroyd J.G. (1950): On the formulation of rheological equations of state. - Proc. R. Soc. London, vol.A200, pp.523-541.
  • [22] Pakdemirli M. (1993): Boundary layer flow of power-law fluids past arbitrary profiles. - IMA J. Appl. Math., vol.50, pp.133-148.
  • [23] Pakdemirli M. and Suhubi E.S. (1992): Similarity solutions of boundary layer equations for second order fluids. - Ini. J. Eng. Sci., vol.30, pp.611-629.
  • [24] Renardy M. (1997): High Weissenberg number boundary layers for the upper convected Maxwell fluid. - J. Non- Newtonian Fluid Mechanics, vol.68, pp. 125-132.
  • [25] Rivlin R.S. and Ericksen J.L. (1955): Stress deformation relations for isotropic materials. - J. Rat. Mech. Anal., vol.4, pp.323-425.
  • [26] Schlichting H. (1979): Boundary Layer Theory. -New York: McGraw-Hill, 6th Edition.
  • [27] Sharifi M. (2002): Viscoelastic Boundary Layers. - M.A.Sc. Thesis, Dept, of Mech. Eng., University of Tehran.
  • [28] Mishra S.P. and Mohapatra U. (1977): Elasticoviscous flow between a rotating and a stationary disk with uniform suction at the stationary disk. - J. Appl. Phys., vol.48, pp.1515-1521.
  • [29] Rajagopal K.R. (1995): Boundary layers in non-linear fluids, trends in applications of mathematics to mechanics, Ini Pittman Monographs and Surveys in Pure and Applied Mathematics (M.D.P. Monteivo Marques and J.P, Rodriques, Eds.). - Longman, vol.77, pp.209-218.
  • [30] Rajagopal K.R., Gupta A.S. and Wineman A.S. (1995): On a boundary layer theory for non-Newtonian fluids. - Appl, Sci. Engng. Lett., vol.18, pp.875-883.
  • [31] Schowalter W.R. (1960): The application of boundary-layer theory to power-law pseudoplastic fluids: similarity solutions. - AIChE J., vol.6, pp.24-28.
  • [32] Shresta G.M. (1969): Laminar elastico-viscous flow through channels with porous walls with different permeability, Appl. Sci. Res., vol.20, pp.289-305.
  • [33] Serth R.W. (1974): Solution of a viscoelastic boundary layer equation by orthogonal collocation. - J. Eng. Mull) vol.8, pp.89-92.
  • [34] Sparrow E.M., Quack H. and Boerner C.J. (1970): Local non-similarity boundary layer solutions. - AIAA J., vol. 11, pp.1936-1942.
  • [35] Sparrow E.M. and Yu H.S. (1971): Local non-similarity thermal boundary-layer solutions. - J. Heat Transfer Trans., ASME, pp.328-334.
  • [36] Van Dyke M. (1964): Perturbation Methods in Fluid Mechanics. - New York: Academic Press.
  • [37] White J.L. (1966): Application of integral momentum methods to viscoelastic fluids: flow about submerged objects. - AIChE J., vol. 12, No.5, pp.1019-1022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0007-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.