Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The parametric instability behavior of a stiffened plate subjected to uniform in-plane edge loading is studied using the finite element analysis. The method of Hill's infinite determinants is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters, such as the aspect ratio, boundary condition, stiffening scheme, on the dynamic stability of stiffened plates. The results show that the location, size and number of stiffeners have a significant effect on the location of the boundaries of the principal instability regions when compared with those of a flat unstiffened plate.
Rocznik
Tom
Strony
169--180
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
- Department of Aerospace Engineering, Indian Institute of Technology Kharagpur - 721302, INDIA
autor
- Department of Aerospace Engineering, Indian Institute of Technology Kharagpur - 721302, INDIA
autor
- Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur-721302, INDIA
Bibliografia
- [1] Bedair O.K. (1998): A contribution to the stability of stiffened plates under uniform compression. - Journal of Computer and Structures, vol.66, pp.535-570.
- [2] Bhat R.B. (1982): Vibration of panels with non-uniformly spaced stijfeners. - Journal of Sound and Vibration, vol.84, pp.449-452.
- [3] Bolotin V.V. (1964): The Dynamic Stability of Elastic System. - San Francisco, California: Holden Day.
- [4] Corr R.B. and Jenning A. (1976): A simultaneous iteration for symmetric eigen value problem. - Int. J. Num. Meth. Engng., vol. 10, pp.647-663.
- [5] Deolasi P.J. and Datta P.K. (1995): Parametric instability characteristics of rectangular plates subjected to localized edge compressing (compression or tension). - Journal of Computer and Structures, vol.54, pp.73-82.
- [6] Duffield R.C. and Willens N. (1972): Parametric resonance of rectangular stiffened plate. - Journal of Applied Mechanics, vol.39, pp.217-222.
- [7] Harik I.E. and Guo M. (1993): Finite element analysis of eccentrically stiffened plates in free vibration. - Computer and Structures, vol.49, No.6, pp.1007-1015.
- [8] Hutt J.M. and Salam A.E. (1971): Dynamic stability of plates by finite elements. - Journal of Engineering Mechanics Div. ASCE, EM, vol.3, pp.879-899.
- [9] Liao C.L. and Cheng C.R. (1994): Dynamic stability of stiffened laminated composite plate and shells subjected to in- plane pulsating force. - Journal of Sound and Vibration, vol. 174, No.3, pp.335-351.
- [10] Mermertas M. and Belek H.T. (1991): Dynamic stability of radially stiffened annular plates. - Journal of Computer and Structures, vol.40, No.3, pp.651-657.
- [11] Merrit R.G. and Willens N. (1973): Parametric resonance of skew stiffened plates. - Journal of Applied Mechanics, vol.40, pp.439-444.
- [12] Mizusawa T. and Kajita T. (1986): Vibration and buckling of skew plates with edges elastically restraints against rotation. - Journal of Computer and Structures, vol.22, pp.987-994.
- [13] Mukhopadhyay M. (1989): Vibration and stability analysis of stiffened plates by semi-analytic finite difference method. Part I: Consideration of bending displacements only. - Journal of Sound and Vibration, vol. 130, No.l, pp.27-39.
- [14] Mukhopadhyay M. and Mukherjee A. (1990): Finite element buckling analysis of stiffened plates. - Journal of Computer and Structures, vol.34, No.6, pp.795-803.
- [15] Shastry B.P. and Rao G.V. (1977): Vibration of thin rectangular plates with arbitrarily oriented stiffeners. - Computer and Structures, vol.7, pp.627-635.
- [16] Sheikh A.H. and Mukhopadhyay M. (2002): Linear and nonlinear vibration analysis of stiffened plate structures. - Journal of Finite Element in Analysis and Design, vol.38, pp.477-502.
- [17] Timoshenko S. and Gere J.M. (1963): Theory of Elastic Stability. - International Edition, New York: McGraw-Hill.
- [18] Troitsky M.S. (1976): Stiffened Plates Bending Stability and Vibration. - Amsterdam: Elsevier Scientific Publishing Co.
- [19] Zienkiewicz O.C. and Taylor R.L.(1989): The Finite Element Method. - NewYork: McGraw-Hill, 4th Ed.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0007-0012