Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The fundamental equations of plane strain problems in generalised thermoelasticity with one relaxation time parameter including the heat source have been written in the form of a vector matrix differential equation. Integral transform techniques are adopted, namely: the Laplace transform for the time variable and the exponential Fourier transform for one of the space variables. Exact expressions for the temperature distribution, thermal stresses and displacement components are obtained in the Laplace-Fourier transform domain. A numerical approach is implemented for the inversion of both transforms in order to obtain the solution in physical domain. Finally, numerical computations of the stresses and temperature have been made and represented graphically (for different values of time t and relaxation time parameter t as shown in the figures).
Rocznik
Tom
Strony
147--160
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
- Department of Mathematics, Sponsored Teachers' Training College Deshbandhu Road: Purulia - 723101, West Bengal, INDIA
autor
- R.C.C. - Institute of Information Technology South Canal Road, Beliaghata, Kolkata - 700015, INDIA
Bibliografia
- [1] Bahar L.Y. and Hetnarshki R.B. (1978): State space approach to thermoelasticity. - J. Therm. Stresses, vol.l, pp. 135-145.
- [2] Bahar L.Y. and Hetnarshki R.B. (1979): Connection between the thermoelastic potential and the state space formulation of thermo elasticity. - J. Therm. Stresses, vol.2, p.238.
- [3] Bellman R., Kalaba R.E. and Lockett Jo-Ann (1966): Numerical Inversion of Laplace Transform. - New York: Elsevier Pub. Co.
- [4] Das N.C., Bhakta P.C. and Dutta S. (1988): Eigenfunction expansion method to the thermoelastic and magneto-thermoelastic problems. - Indian J. Pure Appl. Math., vol. 19, No.7, pp.697-712.
- [5] Das N.C., Das S.N. and Das B. (1983): Eigenvalue approach to thermoelasticity. - J. Therm. Stresses, vol.6, pp.35-46.
- [6] Dhaliwal R.S. and Sing A. (1980): Dynamic Coupled Thermoelasticity. - Delhi: Hindustan Pub.
- [7] Dhaliwal R.S. and Sherief H.H. (1980): Generalized thermoelasticity for anisotropic media. - Quart. Appl. Math., vol.33, pp.1-8.
- [8] Ezzat M.A. and Othman M.I. (2002): State-space approach to generalized magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. - J. Therm. Stresses, vol.25, pp.409-419.
- [9] Green A.E. and Lindsay K.A. (1972): Thermoelasticity. - J. Elasticity, vol.2, pp.1-7.
- [10] Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermo elasticity. - J. Mech. Phys. Solids, vol. 15, pp.299-309.
- [11] Noda N., Furukawa T. and Ashida F. (1989): Generalized thermoelasticity in an infinite solid with a hole. - J. Therm. Stresses, vol. 12, pp.385-402.
- [12] Nowacki W. (1975): Dynamic Problems of Thermo elasticity. - Netherlands: Noordhoff Int. Pub. Leyden.
- [13] Sherief H.H. (1993): State space formulation for generalized thermoelasticity with one relaxation time including heat sources. - J. Therm. Stresses, vol. 16, pp. 163-180.
- [14] Sherief H.H. and Anwar M. (1986): Problem in generalized thermoelasticity. - J. Therm. Stresses, vol.9, pp. 165-181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0007-0010