PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fourth order nonlinear evolution equation for capillary gravity waves in deep water in the presence of a thin thermocline including the effect of wind

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fourth order non-linear evolution equation is derived for a capillary-gravity wave packet in deep water in the presence of a thin thermocline including the effect of wind and viscous dissipation in water. In deriving this equation it has been assumed that the wind induced basic current in water is exponential and the effect of shear in air flow and viscous dissipation in water is accounted for by including a term in the evolution equation. The nonlinear evolution equation is used to study the stability of a uniform capillary-gravity wave train. Expressions for the maximum growth rate of instability and wave number at marginal stability are obtained. From results shown graphically it is found that the inclusion of wind effect increases the growth rate of instability irrespective of the presence of a thin thermocline. For waves with a small wave number, a thin thermocline has a stabilizing influence both in the presence and in the absence of wind input and the maximum growth rate of instability decreases with the increase of thermocline depth. But for waves with a large wave number a thin thermocline has no influence.
Rocznik
Strony
177--193
Opis fizyczny
Bbliogr. 17 poz., wykr.
Twórcy
autor
  • Department of Applied Mathematics, University of Calcutta 92, A.P.C. Road, Kolkata - 700 009, INDIA
autor
  • Department of Applied Mathematics, University of Calcutta 92, A.P.C. Road, Kolkata - 700 009, INDIA
Bibliografia
  • [1] Bhattacharyya S. and Das K.P. (1997): Fourth order nonlinear evolution equations for surface gravity waves in the presence of a thin thermocline. - J. Austral. Math. Soc. Ser., vol.B39, pp.1-17.
  • [2] Davey A. and Stewartson K. (1974): On three dimensional packets of surface waves. - Proc. R. Soc. Lond., vol.A388, pp.101-110.
  • [3] Debsarma S. and Das K.P. (2002): Fourth order nonlinear evolution equations of capillary-gravity waves in the presence of a thin thermocline in deep water. - ANZIAM Journal (to be published).
  • [4] Dhar A.K. and Das K.P. (1990): A fourth order evolution equation for deep water surface gravity waves in the presence of wind blowing over water. - Phys. Fluids., vol.A2, pp.778-783.
  • [5] Dhar A.K. and Das K.P. (1999): A fourth order evolution equation for capillary-gravity waves including the effects of wind input and shear in the water current. - App. Mech. Engg., vol.4, No.l, pp.5-24.
  • [6] Dysthe K.B. (1979): Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond., vol.A369, pp.105-114.
  • [7] Dysthe K.B. and Das K.P. (1981): Coupling between a surface wave spectrum and an internal wave: modulational interaction. - J. Fluid. Mech., vol. 104, pp.483-503.
  • [8] Gastel K. Van, Janssen P.A.E.M. and Komen G.J. (1985): On phase velocity and growth rate of wind induced gravity- capillary waves. - J. Fluid Mech., vol.161, pp.199-216.
  • [9] Hara T. and Mei C.C. (1991): Frequency downshift in narrow-banded surface waves under the influence of wind. - J. Fluid Mech., vol.230, pp.429-477.
  • [10] Hara J. and Mei C.C. (1994): Wind effects on nonlinear evolution of slowly varying gravity-capillary waves. - J. Fluid Mech., vol.267, pp.221-250.
  • [11] Hogan S.J. (1985): Fourth order evolution equation for deep water gravity-capillary waves. - Proc. R. Soc. Lond., vol.A402, pp.359-372.
  • [12] Janssen P.A.E.M. (1983): On a fourth order envelope equation for deep water waves. - J. Fluid Mech., vol.126, pp.1-11.
  • [13] Longuet-Higgins M.S. (1978a): The instabilities of gravity waves of finite amplitude in deep water. I-Super harmonics. Proc. R. Soc. Lond., vol.A360, pp.471-488.
  • [14] Longuet-Higgins M.S. (1978b): The instabilities of gravity waves of finite amplitude in deep water: 11-Subharmonic s. - Proc. R. Soc. Lond., vol.A360, pp.489-505.
  • [15] Philips O.M. (1977): The Dynamics of Upper Ocean. - Cambridge University Press.
  • [16] Stocker J.R. and Peregrine D.H. (1999): The current-modified nonlinear Schrödinger equation. - J. Fluid Mech., vol.399, pp.335-353.
  • [17] Zakharov V.E. (1968): Stability of periodic waves of finite amplitude on the surface of deep fluid. - J. Appl. Mech. Tech. Phys., vol.2, pp. 190-194.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.