Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Linear and non-linear analyses of convection in a second-order Boussinesquian fluid-saturated porous medium are made. The Rivlin-Ericksen constitutive equation is considered to effect a viscoelastic correction to the Brinkman momentum equation together with a single-phase heat transport equation. The linear and non-linear analyses are respectively based on the normal mode technique and the truncated representation of Fourier series. The linear theory reveals that the critical eigenvalue is independent of viscoelastic effects and the principle of exchange of stabilities holds. The non-linear study of cellular convection leads to an autonomous system of differential equations which is solved numerically. The finite amplitude disturbances are found to be independent of transient conditions and viscoelasticity is shown to stabilize the system. The Nusselt number is calculated for different values of the parameters arising in the problem. The possibility of chaotic motion and its similarity to the problem of magnetoconvection are discussed.
Rocznik
Tom
Strony
677--692
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
- Department of Mathematics, Bangalore University Central College Campus, Bangalore - 560 001, INDIA
autor
- Department of Mathematics, Bangalore University Central College Campus, Bangalore - 560 001, INDIA
Bibliografia
- [1] Baker G.L. and Gollub J.P. (1990): Chaotic Dynamics. An Introduction. - Cambridge: Cambridge University Press.
- [2] Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability. - Oxford: Clarendon Press.
- [3] Dandapat B.S. and Gupta A.S. (1975): lnstability of a horizontal layer of viscoelastic liąuid on an oscillating plane. - J. Fluid Mech., vol.72, pp.425-432.
- [4] Dunn J.E. and Fosdick R.L. (1974): Thermodynamics, stability and boundedness of fluids of complexity and fluids of second grade. - Archive for Rational Mech. and Anal., yol.56, pp. 191-252.
- [5] Dunn J.E. and Rajagopal K.R. (1995): Fluids of differential type: Critical review and thermodynamic analysis. - Int. J. Engg. Sci., vol.33, pp.689-729.
- [6] Eltayeb I.A. (1977): Nonlinear thermal convection in an elasticoviscous layer heated from below. - Proc. Roy. Soc. London, vol.A356, pp. 161-176.
- [7] Green T. (1968): Oscillating convection in an elastico-viscous liquid. - Phys. Fluids, vol.ll, No.7, pp. 1410-1418.
- [8] Herbert D.M. (1963): On the stability of viscoelastic liquids in heated plane Couette flow. - J. Fluid Mech., vol.l7, pp.353-359.
- [9] Kaloni P.N. (1989): Some remarks on useful theorems for second-order fluids. - J. Non-Newt. Fluid Mech., vol.31, pp.115-120.
- [10] Khayat R.E. (1994): Chaos and overstability in thermal convection of viscoelastic fluids. - J. Non-Newt. Fluid Mech., yol.53, pp.227-255.
- [11] Khayat R.E. (1995): Non-linear overstability in thermal convection in viscoelastic fluids. - J. Non-Newt. Fluid Mech., vol.58, pp.331-356.
- [12] Kolodner P. (1998): Oscillatory convection in viscoelastic DNA suspensions. - J. Non. Newt. Fluid Mech., vol.75, No.2-3, pp.167-192.
- [13] Lorenz E.N. (1963): Deterministic non-periodic flows. - J. Atm. Sci., vol.20, pp. 130-141.
- [14] Lowrie W. (1997): Fundamentals of Geophysics. - New York: Cambridge University Press.
- [15] Muller I. and Wilmański K. (1986): Extended thermodynamics of a non-Newtonian fluid. - Rheologica Acta, vol.25, No.4, pp.335-349.
- [16] Nield D.A. (1999): Modelling the effects of a magnetic field or rotation on flow in a porous medium: momentum equation and anisotropic permeability analogy. - Tech. Notę, Int. J. Heat Mass Trans., vol.42, pp.3715-3718.
- [17] Ott E. (1993): Chaos in Dynamical Systems. - Cambridge: Cambridge University Press.
- [18] Park H.M. and Lee H.S. (1996): Hopf bifurcation of viscoelastic fluids heated from below. - J. Non-Newt. Fluid Mech., vol.66, pp.1-34.
- [19] Platten J.K. and Legros J.C. (1984): Convection in liquids. - Berlin: Springer.
- [20] Rajagopal K.R. (1995): On boundary conditions for fluids of the differential type, In: Navier-Stokes Eąuations and Related Non-Linear Problems (A. Seąuira, Ed.). - New York: Plenum Press.
- [21] Rajagopal K.R. and Gupta A.S. (1981): On a class of exact Solutions to the equations of motion of a second grade fluid. - Int. J. Engg. Sci., vol.l0, pp.1009-1014.
- [22] Rajagopal K.R. and Gupta A.S. (1984): An exact solutionfor the flow of a non-Newtonian fluid past an infinite porous plate. - Mechanica, vol.l9, pp.158-160.
- [23] Rajagopal K.R. and Kaloni P.N. (1989): Some remarks on boundary conditions for the flows of fluids of the differential type, In: Continuum Mechanics and its Applications(Graham G.A.C and Malik S.K., Eds.). - New York: Hemisphere Press.
- [24] Rajagopal K.R., Ruzicka M. and Srinivasa A.R. (1996): On the Oberbeck-Boussinesq approximation. - Math. Model and Methods in Appl. Sci., vol.6, pp.l 157-1167.
- [25] Riahi R. (1986): Nonlinear convection in a viscoelastic fluid. - J. Math. Phy. Sci., vol.20, pp.211-229.
- [26] Sharma R.C. and Pardeep Kumar (1996): Thermal instability ofan Oldroydian viscoelastic fluid in a porous medium. - Polish Ac. Sci., vol.l, pp.99-107.
- [27] Sharma R.C. and Sharma Y.D. (1990): Thermal instability in a Maxwellian viscoelastic fluid in porous medium. - Math. Phys. Sci., vol.24, No.2, pp.l 15-123.
- [28] Sharma R.C. and Sunil (1994): Thermal instability of Oldroydian viscoelastic fluid with suspended particles in hydromagnetics in a porous medium. - Polymer-Plastics Tech. and Sci., vol.33, No.3, pp.323-330.
- [29] Siddheshwar P.G. (1999): Rayleigh-Benard convection in a second-order ferromagnetic fluid with second sound. - Proc. VIII Asian Cong. Fluid Mech., China, December 6-10, 1999, pp.631-634.
- [30] Siddheshwar P.G. and Pranesh S. (1999): Effect of temperature/gravity modulation on the onset of magnetoconvection in weak electrically conducting fluids with intemal angular momentum. - J. Magn. Magn. Mater., vol. 192, pp. 159-176.
- [31] Siddheshwar P.G. and Pranesh S. (2000): Effect of temperature/gravity modulation on the onset of magnetoconvection in electrically conducting fluids with intemal angular momentum. - Letter to the Editor, J. Magn. Magn. Mater., vol.219, pp.L153-L162.
- [32] Siddheshwar P.G. and Srikrishna C.V. (1999): Double diffusive convection in a viscoelastic fluid-filled high-porosity medium. - Far East J. Appl. Math., vol.3, No.2, pp.171-181.
- [33] Siddheshwar P.G. and Srikrishna C.V. (2001): Rayleigh-Benard convection in a viscoelastic fluid-filled high-porosity medium with non-uniform basic temperature gradient. - Int. J. Math. Math. Sci., vol.25, No.9, pp.609-619.
- [34] Siddheshwar P.G. and Srikrishna C.V. (2002a): Effects of non-uniform basic temperature gradient and earths rotation on the onset of convection in a viscoelastic fluid-filled high-porosity mantle. - Ind. Geophysical Union, vol.6, pp.7-13.
- [35] Siddheshwar P.G. and Srikrishna C.V. (2002b): Unsteady non-linear convection in a second-order fluid. - Int. J, Nonlinear Mech., vol.37, pp.321-330.
- [36] Simmons G. (1974): Differential Equations with Applications and Historical Notes. - New York: Tata McGraw Hill.
- [37] Srikrishna C.V. (2001): Effect of non-inertial acceleration on the onset of convection in a second-order fluid-saturated porous medium. - Int. J. Engg. Sci., vol.39, No.5, pp.599-609.
- [38] Swinney H.L. (1983): Characterization of hydro dynamic strange attractors. - Physica 7D, vol.3, pp.448-454.
- [39] Vander Borght R., Murphy J.O. and Steiner J.M. (1974): A theoretical investigation of finite amplitudę thermal convection in non-Newtonian fluids. - ZAMM, vol.54, pp.l-8.
- [40] Veronis G. (1959): Cellular convection with finite amplitude in a rotating fluid. - J. Fluid Mech., vol.5, pp.401-435.
- [41] Vest C.M. and Arpaci V.S. (1969): Overstability of a viscoelastic fluid layer heated from below. - J. Fluid Mech., vol.36, pp.613-623.
- [42] Yih K.A. (1998): Heat source/sink effect on MED mixed convection in stagnation flow on a vertical permeable plate In porous media. - Int. Comm. Heat Mass Trans., vol.25, pp.427-435.
- [43] Zierep J. and Oertel Jr. (1982): Convective transport and instability phenomena. - Karlsruhe: G. Braun.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0003-0036