PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free vibration of isotropic thick/thin plates using a sub-parametric shear deformable element

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A free vibration analysis of isotropic plates is investigated in this paper. A sixteen node sub-parametric element having thirty-six degrees of freedom is developed for this purpose. The transverse displacement and bending rotations are taken as independent field variables. The polynomials used to express these variables are of the same order. The entire formulation is made based on the first-order shear deformation theory (FSDT). The rotary inertia is included in the consistent mass matrix for the analysis. Isotropic plates with different thickness ratios, aspect ratios and boundary conditions are analyzed. The results show an excellent agreement with the available published analytical results.
Rocznik
Strony
441--448
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
  • Department of Applied Mechanics, Bengal Engineering College (Deemed University) Howrah - 711 103, West Bengal, INDIA
autor
  • Department of Applied Mechanics, Bengal Engineering College (Deemed University) Howrah - 711 103, West Bengal, INDIA
autor
  • Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur - 721 302, INDIA
Bibliografia
  • [1] Batoz J.L., Bathe K.J. and Ho L.W. (1980): A study of three-node triangular plate bending elements. - Int. J. Numer. Meth. Engg., vol.l5, pp.1771-1812.
  • [2] Bhashyam G.R. and Gallagher R.H. (1984): An approach to the inclusion of transverse shear deformation in finite element plate bending analysis. - Computers and Structures, vol,19, pp.35-40.
  • [3] Cheung Y.K. and Chen W. (1989): Hybrid quadrilateral element based on Mindlin/Reissner plate theory. Computers and Structures, vol.32, pp.327-339.
  • [4] Corr R.B. and Jennings A. (1976): Asimultaneous iteration algorithm for symmetric eigenvalue problems. - International Journal for Numerical Methods in Engineering, vol.l0, pp.647-663.
  • [5] Delpak R. (1967): Axi-symmetric Vibration of Shells of Revolution by the Finite Element Methods. - M.Sc. Thesis, University of Wales, Swansea.
  • [6] Ergatoudis J.G. (1966): Quadrilateral Elements in Piane Analysis and Introduction to Solid Analysis. - M.Sc. Thesis, University of Wales, Swansea.
  • [7] Hughes T.J.R. and Cohen M. (1978): The heterosis finite element for plate bending. - Computers and Structures, vol.9, pp.445-450.
  • [8] Hughes T.J.R. and Tezduyaf T.E. (1981): Finite elements based on Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. - J. Appl. Mech., vol.48, pp.587-596.
  • [9] Hrabok M.M. and Hrudey T.M. (1984): A review and catalogue of plate bending finite elements. - Computers and Structures, vol.l9, pp.479-495.
  • [10] Liew K.M., Lam K.Y. and Chow S.T. (1990): Free vibration analysis using orthogonal plate function. - Computers and Structures, vol.34, pp.79-85.
  • [11] Liew K.M., Hung K.C. and Lim M.K. (1993a): A continuum three-dimensional vibration analysis of thick rectangular plates. - Int. J. Solids Structures, vol.30, pp.3357-3379.
  • [12] Liew K.M., Xiang Y. and Kitipornchai S. (1993b): Transverse vibration of thick rectangular plates -1. Comprehensive sets of boundary conditions. - Computers and Structures, vol.49, pp.1-29.
  • [13] Liew K.M., Xiang Y. and Kitipornchai S. (1995a): Research on thick plate vibration: A literature survey. - Journal of Sound and Vibration, vol.l80, pp. 163-176.
  • [14] Liew K.M., Hung K.C. and Lim M.K. (1995b): Vibration of Mindlin plates using boundary characteristic orthogonal ploynomials. — Journal of Sound and Vibration, vol.l82, pp.77-90.
  • [15] Liew K.M., Hung K.C. and Lim M.K. (1995c): Three-dimensional vibration of rectangular plates: Effects of thickness and edge constraints. - Journal of Sound and Vibration, vol.l82, pp. 709-727.
  • [16] Leissa A. W. (1973): The free vibration of rectangular plates. - Journal of Sound and Vibration, vol.31, pp.257-297.
  • [17] Manna M.C., Haldar S. and Bhattacharya A.K. (2002): Bending analysis of isotropic plates using a sixteen noded sub-parametric element. - Int. J. of Appl. Mech. and Engg., vol.7, No.4, pp.1271-1282.
  • [18] Mindlin R.D. (1951): Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. - Journal of Applied Mechanics, ASME, vol.l8, pp.31-38.
  • [19] Pryor C.W., Barker R.M. and Frederick D. (1970): Finite element bending analysis J. Eng. Mech. Div„ ASCE, vol.96, pp.967-983.
  • [20] Pugh E.D.L., Hinton E. and Zienkiewicz O.C. (1987): A study of quadrilateral plate bending elements with reduced integration. - Int. J. Numer. Meth. Engng., vol,12, pp.1059-1079.
  • [21] Petrolito J. (1989): A modified ACM element for thick plate analysis. - Computers and Structures, vol.32, pp.1303-1309.
  • [22] Rao G.V„ Venkataramana J. and Raj I.S. (1974): A high precision triangular plate bending element for the analysis of thick plates. - Nuci. Engg. Des., vol.30, pp.408-412.
  • [23] Salerno V.L. and Goldberg M.A. (1968): Effect of shear deformations on the bending of rectangular plates. - Appl. Mech., ASME, vol.27, pp.54-58.
  • [24] Yuan F.G. and Miller R.E. (1989): A cubic triangular finite element for fiat plate with shear. - Int. J. Numer. Meth. Engg., vol.28, pp. 109-126.
  • [25] Zienkiewicz O.C. and Taylor R.L. (1988): The Finite Element Methods (Two Yolumes). - New York: McGraw Hill.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0003-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.