PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some aspects of Rikitake system of dynamical equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, some characteristic features of a dynamical system proposed by Rikitake (1958), as a model for the self-generation of the Earth's magnetic field by large current carrying eddies in the core are examined. First, a linear stability analysis of a fixed point of the Rikitake system of three dynamical equations is made. Next, utilizing the conjecture that an integral of motion must assume constant value when evaluated at a singularity, a few integrals of motion of the Rikitake system are worked out. Finally, the effects of a linear feedback control on the linearized versions of the Rikitake system in terms of state perturbation variables, are investigated. The dynamical equations are solved numerically by the fourth order Runge-Kutta method. The results are presented graphically and discussed.
Rocznik
Strony
87--96
Opis fizyczny
Bibliogr. 8 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Midnapur College Midnapur, West Bengal, INDIA
  • Sodepur Deshbandhu Vidyapith For Boys Sodepur, 24 Parganas (North), West Bengal, INDIA
  • Physics and Applied Mathematics Unit Indian Statistical Institute, Calcutta - 700035, INDIA
Bibliografia
  • [1] Balachandran K. and Dauer J.P. (1999): Elements of Control Theory. - London: Narosa Publishing House.
  • [2] Gupta N. (1992): Integrals of motion for the Lorenz system. - Journal of Mathematical Physics, vol.34, No.2, pp.801-804.
  • [3] Kapitaniak T. and Bishop S.R. (1999): The Illustrated Dictionary of Nonlinear Dynamics and Chaos. - New York: John Wiley & Sons.
  • [4] Korsch H.J. and Jodl H.J. (1998): Chaos. - New York: Springer Verlag.
  • [5] Lorenz E.N. (1963): Deterministic nonperiodic flows.- Journal of the Atmospheric Science, vol.20, pp.130-141.
  • [6] Rikitake T. (1958): Oscillations of a system of disk dynamics. - Cambridge Philosophical Society, vol.54, pp.89-105.
  • [7] Shahverdiev E.M. (1998): Chaos control in photoconductors. - arXiv.cond-mat/9808045, vol.l, No.5, August.
  • [8] Yincent T.L. and Yu J. (1991): Control of chaotic system. - Dynamics and Control, vol.l, pp.35-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0003-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.