PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear viscoelastic behavior of flexible cellular plastics refined rod model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new technique of modelling nonlinear viscoelastic behavior of low-density flexible foams including cellular plastics used in advanced implants, namely, artificial analogs of periodont of the dental system and trabecular bones of the skeletal system has been developed. The material microstructure is modeled by a rod structure with chaotically oriented cubic cells. Young's modulus and critical strain (i.e., the case of stability loosing) dependence on the solid state phase fraction of flexible cellular plastics has been investigated. The dependences of tangential stress on shear strain, hydrostatic pressure on volume strain and axial stress on longitudinal deformation with taking into account solid phase viscosity at a given strain rate have been obtained for the simulated materials. The numerical results led to the conclusion that at a certain compression rate the transversal strain factor of a material becomes negative.
Rocznik
Strony
27--41
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • V.A. Belyi Metal-Polymer Research Institute, Belarussian Academy of Sciences 32A Kirov Str., 246050 Gomel, BELARUS
autor
  • V.A. Belyi Metal-Polymer Research Institute, Belarussian Academy of Sciences 32A Kirov Str., 246050 Gomel, BELARUS
autor
  • V.A. Belyi Metal-Polymer Research Institute, Belarussian Academy of Sciences 32A Kirov Str., 246050 Gomel, BELARUS
  • V.A. Belyi Metal-Polymer Research Institute, Belarussian Academy of Sciences 32A Kirov Str., 246050 Gomel, BELARUS
Bibliografia
  • [1] Beverte I.V. and Kregers A.F. (1987): Stiffness of lightweight open-porosity foam plastics. - Mechanics of Composite Materials, vol.23, No.l, pp.27-33.
  • [2] Brandel B. and Lakes R.S. (2001): Negative Poissons ratio polyethylene foams. - J. Materials Science, vol.36, pp.5885-5893.
  • [3] Chan N. and Evans K.E. (1997): Microscopic examination of the microstrncture and deformation of conventional and auxetic foams. - J. Materials Science, vol.32, pp.5725-5736.
  • [4] Choi J.B. and Lakes R.S. (1995): Nonlinear analysis ofthe Poisson ’s ratio of negative Poisson’s ratio foams. - J. Composite Materials, vol.29, No.l, pp. 113-128.
  • [5] Dement’ev A.G. and Tarakanov O.G. (1970a): Effect of cellular structure on the mechanical properties of plastic foams. - Polymer Mechanics, vol.6, No.4, pp.519-525.
  • [6] Dement’ev A.G. and Tarakanov O.G. (1970b): Model analysis of the cellular structure of plastic foams of the polyurethane type. - Polymer Mechanics, vol.6, No.5, pp.744-749.
  • [7] Gibson L.J. and Ashby M.F. (1982): The mechanics of three-dimensional cellular materials. - Proc. Roy. Soc. London, vol.A382, pp.43-59.
  • [8] Gibson L.J. and Ashby M.F. (1997): Cellular Solids: Structure and Properties. - Cambridge: Cambridge University Press.
  • [9] Goldman A.Ya. (1979): Strength of Constructional Plastics. - Leningrad: Mashinostroenie (in Russian).
  • [10] Gromov V.G. and Raetzky G.N. (1971): Stability and supercritical regime of compressed viscoelastic rod. - International Applied Mechanics, vol.7, No. 12, pp.87-96.
  • [11] Hilyard N.C. and Cunningham A. (1994): Low Density Cellular Plastics: Physical Basis of Behaviour. - London: Chapman and Hall.
  • [12] Hudson D.G. (1964): Statistic. Lecture on Elementary Statistics and Probability. - Geneva: CERN.
  • [13] Landau L.D., Lifshitz E.M., Kosevich A.M. and Pitaevskii I.P. (1986): Theory of Elasticity. - London: Pergamon Press.
  • [14] Lederman J.M. (1971): The prediction of the tensile properties of flexible foams. - J. Appl. Polymer Sci., vol.l5, No.3, pp.696-703.
  • [15] Nyashin M.Y., Osipov A.P., Bolotova M.Ph., Nyashin Y.I., Simanovskaya E.Y. (1999): Periodontal ligament may be viewed as a porous material filled by free fluid: experimental proof. - Russian J. Biomechanics, vol.3, No.l, pp.89-95.
  • [16] Overaker D.W., Lagrana N.A., Cuitińo A.M. (1999): Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. - J. Biomechanical Eng., vol.l31, pp.542-550.
  • [17] Rzhanitsyn A.R. (1968): Theory of Creep. - Moscow: Nauka (in Russian).
  • [18] Shilko S.V., Stelmakh S.V., Chernous D.A. and Pleskatchevskii Yu.M (1998): Structural simulation of supercompressible materials. - J. Theor. and Appl. Mechanics, No.l, pp.87-96.
  • [19] Starovoitov E.I. (2001): Foundations of the theory of elasticity, plasticity and viscoelasticity. - Gomel: BelSUT (in Russian).
  • [20] Wang Y and Cuitino A.M (2000): Three-dimensional nonlinear open-cell foams with large deformations. - J. Mech. and Phys. Solids, vol.48, No.5, pp.961-988.
  • [21] Warren W.E. and Kraynik A.M. (1987): The effective elastic properties of low-density foams. - The Winter Annual Meeting of the ASME, Boston, December 18-23, pp.123-145.
  • [22] Weaire D. and Fortes M.A. (1994): Stress and strain in liquid and solid foams. - Advances in Physics, vol.43, No.6, pp.685-738.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0003-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.