PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion of a single solid and fluid sphere in viscoplastic fluids and viscoplastic fluid flow through fixed beds: a unified solution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An approach to the calculation of drag and fall or rise velocity of a solid and Newtonian fluid spheres in viscoplastic fluids and to the calculation of pressure drop in viscoplastic fluid flow through random fixed beds of particles is suggested. It is based on the application of the modified Rabinowitsch-Mooney equations together with corresponding relations for consistency variables and on the application of the relationship of Hadamard-Rybczynski valid for both the fluid and solid spheres. The solution is concretized for Bingham, Casson and Robertson-Stiff flow models, and in the case of fixed beds also for Herschel-Bulkley flow model.
Rocznik
Strony
1157--1172
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
autor
  • Department of Chemical Engineering, University of Pardubice 53210 Pardubice, CZECH REPUBLIC
autor
  • Department of Chemical Engineering, University of Pardubice 53210 Pardubice, CZECH REPUBLIC
autor
  • Department of Chemical Engineering, University of Pardubice 53210 Pardubice, CZECH REPUBLIC
autor
  • Department of Chemical Engineering, University of Pardubice 53210 Pardubice, CZECH REPUBLIC
autor
  • Department of Chemical Engineering, University of Pardubice 53210 Pardubice, CZECH REPUBLIC
Bibliografia
  • [1] Ansley R.W. and Smith T.N. (1967): Motion of a spherical particle in a Bingham plastic. - AIChE J., vol.13, No.6, pp.l 193-1196.
  • [2] Beris A.N., Tsamopoulos J.A., Armstrong R.C. and Brown R.A. (1985): Creeping motion of a sphere through a Bingham plastic. - J. Fluid. Mech., vol.158, pp.219-244.
  • [3] Bhavaraju S.M., Mashelkar R.A. and Blanch H.W. (1978): Bubble motion and mass transfer in non-Newtonian fluids: Part 1: Single bubble in power-law and Bingham fluids. - AIChE J., vol.24, N0.6, pp. 1063-1070.
  • [4] Blackery J. and Mitsoulis E. (1997): Creeping motion of a sphere in tubes filled with a Bingham plastic material. - J. Non-Newtonian Fluid Mech., vol.70, pp.59-77.
  • [5] Carman P.C. (1956): Flow of Gases through Porous Media. - London: Butterworths.
  • [6] Curreau P.J., De Kee D. and Chhabra R.P. (1997): Rheology of Polymeric Systems, Principles and Applications. - Munich: Hanser Publishers.
  • [7] Casson N. (1959): Rheology of dispersed system, In: Proc. of the British Society of Rheology (C.C. Mill, Ed.). - September 19-21, 1957, University College of Swansea; London: Pergamon Press, Symposium Publications Division.
  • [8] Dewsbury K., Karamaev D. and Margaritis A. (1999): Hydrodynamic characteristics of free rise of light solid particles and bubbles in non-Newtonian liquids. - Chem. Eng. Sci., vol.54, No.24, pp.4825-4830.
  • [9] Dolejs V. and Machać I. (1995): Pressure drop during the flow of a Newtonian fluid through a fixed bed of particles. - Chem. Eng. Process., vol.34, No.l, pp.1-8.
  • [10] Dolejs V. and Mikulaśek P. (1997): Creeping flow of generalized Newtonian fluid through a fixed and a fluidized bed of spherical particles. - Chem. Eng. Process., vol.36, No.2, pp.111-117.
  • [11] Dolejs V., Dolećek P. and Śiśka B. (1998a): Drag and fall velocity of spherical particle in generalized Newtonian and viscoplastic fluids. - Chem. Eng. Process., vol.37, No.2, pp.189-195.
  • [12] Dolejs V., Śiśka B. and Dolećek P. (1998b) Modification of Kozeny-Carman concept for calculating pressure drop in flow of viscoplastic fluids through fixed beds. - Chem. Eng. Sci., vol.53, No.24. pp.4155-4158.
  • [13] Dolejs V. and Śiśka B. (2000): Flow of viscoplastic fluids through fixed beds of particles: comparison of three approaches. - Chem. Eng. Process., vol.39, No.5, pp.417-423.
  • [14] Dolejs V., Cakl J., Śiśka B. and Dolećek P. (2002): Creeping flow of viscoelastic fluid through fixed beds of particles. - Chem. Eng. Process., vol.41, No.2, pp. 173-178.
  • [15] Happel J. and Brenner H. (1965): Low Reynolds Number Hydrodynamics. - New Jersey: Prentice Hall, Inc.
  • [16] Khan A.R. and Richardson J.F. (1987): The resistance to motion of a solid sphere in a fluid. - Chem. Eng. Commun., vol.62, pp.135-150.
  • [17] Kozeny J. (1927): Ueber Kapillare Leitung des Wassers in Boden. - S.B. Akad. Wiss. Wien, Abt.IIa, vol.136, pp.271-306.
  • [18] Lapple C.E. (1951): Particle Dynamics. - Eng. Res. Lab., E.I. Dupont de Nemours and Co. Wilmington, Delaware.
  • [19] Robertson R.E. and Stiff H.A. (1976): An improved mathematical model for relating shear stress to shear rate in drilling fluids and cement slurries. - Trans. AIME, vol.261, pp.31-36.
  • [20] Yoshioka N., Adachi K. and Ishimura H. (1971): On creeping flow of a viscoplastic fluid past a sphere. - Kagaku Kogaku, vol.18, No.l 1, pp.l 144-1152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0001-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.