PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computation of transport and equilibrium properties of molecular systems with quantum mechanical calculation of interaction potentials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The computation of transport coefficients in gases on the basis of molecular theory requires the determination of interaction potentials. As a rule, the dependencies of interaction energy on the distances between the molecules extracted from experimental data on different measurable characteristics are used. At the same time, direct calculation of interaction potentials on the basis of approximate solution of Schroedinger equation is possible for a number of relatively simple in their electron structure, but important for applications systems. Mixtures of the vapors of the atoms of metals with noble gases represent a typical example of such systems. In this paper, a comparison between experimental and calculated diffusion coefficients of the vapors of metals in the first and the second groups of Periodic Table dissolved in noble gases is presented. A sufficient for practical needs convergence of numerical results is demonstrated. The interaction potentials obtained can be used in the calculations of other transport coefficients, such as viscosity and thermal conductivity, in the mixtures of the vapors of metals with gases. Along with the traditional approach based on Schroedinger formalism, modern alternative methods of quantum mechanics and quantum statistics are presented. One example is the Path Integral Monte Carlo method based on Feynman representation of quantum mechanics. This formalism makes it possible to solve quantum statistical problems for thermally excited electron states and in this way to simulate numerically equilibrium properties of dense non-ideal plasma. Exchange and all correlation effects can be described in this formalism in an explicit way. Another modern approach aimed at stochastic simulations of electron quantum states is the so-called Diffusion Method, representing a solution of Schroedinger equation in imaginary time. Applications of stochastic methods in the problems of thermodynamics and plasma physics are presented. The perspectives and possible directions of development of new methods in the statistical description of condensed matter is briefly discussed.
Rocznik
Strony
1095--1123
Opis fizyczny
Bibliogr. 34 poz., wykr.
Twórcy
  • St. Petersburg State Technical University St. Petersburg, 195251, Politehnicheskaya 29, RUSSIA
  • St. Petersburg State Technical University St. Petersburg, 195251, Politehnicheskaya 29, RUSSIA
Bibliografia
  • [1] Akopyan S.H., Lukyanov C.I. and Shevkunov S.V. (1985): Analysis of the influence of intermolecular interactions on IR spectrum of liquid carbon monooxide by Monte Carlo method. - Himicheskaya Fizika, vol.4, No.l 1, pp. 1454-1459.
  • [2] Arefiev K.M., Borishanskii V.M. and Paleev 1.1. (1968): Diffusion coefficients of cesium and potassium vapors in helium and argon gases. - Teplofizika Vysokih Temperatur, vol.6, No.6, pp.999-1002 (in Russian).
  • [3] Arefiev K.M., Lecyuis A.R., Homchenkov B.M. and Cemehman L.Sh. (1974): The regularities in diffusion condensation of zinc and lead vapors. - Inzenerno- fizicheski Jurnal, vol.27, No.5, pp.825-832 (in Russian).
  • [4] Arefiev K.M. and Guseva M.A. (1984): The calculation of diffusion coefficients of metal vapors in gases with the use of quantum mechanical solutions. - Inzenerno- fizicheski Jurnal, vol.47, No.4, pp.608-617 (in Russian).
  • [5] Arefiev K.M., Guseva M.A. and Homchenkov B.M. (1987): The measurements of diffusion coefficients of cadmium and magnesium vapors in gases by Stefan method. Teplofizika Vysokih Temperatur, vol.25, No.2, pp.250-255 (in Russian).
  • [6] Arefiev K.M., Balashova H.B. and Guseva M.A. (1990): Diffusion of cadmium and zinc vapors in molecular hydrogen. - Teplofizika Vysokih Temperatur, vol.28, No.2, pp.251-255 (in Russian).
  • [7] Arefiev K.M. and Balashova N.B. (1991): The calculation of diffusion coefficients of alkaline and alkaline earth metal vapors in helium with the use of exchange perturbation theory. - Inzenerno-fizicheski Jurnal, vol.61, No.5, pp.823-828 (in Russian).
  • [8] Arefiev K.M., Balashova N.V., Gshilin A.B. and Vinigradova N.B. (1996): Potential energy of the interaction of magnesium atom with hydrogen molecule and diffusion coefficient. - Indshenerno-fizicheskii Jurnal, vol.69, No.4, pp.582-588 (in Russian).
  • [9] Barthelat J.C., Ortega-Blake I., Gruz S.A., Vagras-Aburto C. and Chadderton L.T. (1985): Ab initio Mg ~(h°,He+, He2*} potentials and ion scattering by atomic stringes and planes. - Phys. Rev. A., vol.31, No.3. pp.1382-1391.
  • [10] Cafarel M., Claverie P., Mijoule C., Andzelm J. and Salahuj D.R. (1989): Quantum Monte Carlo method for some model and realistic coupled anharmonic oscillators. - J. Chem. Phys., vol.90, No.2, pp.990-1002.
  • [11] Ceperley D.M. and Pollock E.L. (1989): Path-Integral simulation of the superfluid transition in Mo-dimensional He. - Phys. Rev., vol.B39, No.4, pp.2084-2093.
  • [12] Girshfelder J., Kertiss Ch. and Berd R. (1961): Molecular Theory of Gases and Liquids. Moscow, Foreign Literature (in Russian).
  • [13] Lewart D.S., Pandharipande V.R. and Pieper S.C. (1988): Single-particle orbitals in liquid-helium drops. - Phys. Rev., vol.B37, No. 10, pp.4950-4964.
  • [14] Martsinovski A.A., Shevkunov S.V. and Vorontsov-Velyaminov P.N. (1991): Study of clustering in nonideal plasma by combined open ensemble Monte Carlo - cluster expansion method. - Molecular Simulation, vol.6, pp. 143-151.
  • [15] Muhtarov E.S. and Semenov A.M. (1987): The calculation of thermophysical properties of alkaline earth metal vapors. - Teplofizika Vysokih Temperatur, vol.25, No.6, pp. 1094-1099 (in Russian).
  • [16] Murrell J.N., Randic M. and Wulliams D.R. (1965): The theory of intermodular forces in the region of small orbital overlap. - Proc. Royal. Soc. A., vol.284, No.1396. pp.566-581.
  • [17] Shevkunov S.V. (1989): Exchange symmetry in path integral method. Hydrogen molecule, In: Collected works: Modern problems in statistical physics. - Kiev, Naukova Dumka, vol.l, pp.379-384 (in Russian).
  • [18] Shevkunov S.V. (1990): Thermal stability of compressed hydrogen atom at the temperatures (l-2)xl04K. Monte Carlo calculation. - Teplofizika Vysokih Temperatur, vol.28, No.l, pp.1-9 (in Russian).
  • [19] Shevkunov S.V. (1991): Thermal destruction of electron shell of Be+ ion in a dense high temperature plasma. Monte Carlo calculation. - Teplofizika Vysokih Temperatur, vol.29, No.l, pp.45-55 (in Russian).
  • [20] Shevkunov S.V., Roschinenko O.M. and Vorontsov-Velyaminov P.N. (1991): Calculation of scattering pseudopotential for Helium atom - free thermalized positron using quantum path-integral Monte Carlo method. - Molecular Simulation, vol.7. pp.205-219.
  • [21] Shevkunov S.V. and Vorontsov-Velyaminov P.N. (1991): Path integral Monte Carlo simulation of electron pair in a cavity. Paramagnetic susceptibility and other canonical properties. - Molecular Simulation, vol.7, pp.249-262.
  • [22] Shevkunov S.V. (1993): Mechanism for retarding the nucleation rate in a dense nonneutral ion plasma. - Journal of Experimental and Theoretical Physics (JETP, American Institute of Physics), vol.77, No.3, pp.413-427.
  • [23] Shevkunov S.V. (1995a): Formation of double electric layer at initial stage of the expansion of a plasma clot in the phenomenon of explosive electron emission. Numerical simulation. - Fizika Plazmy, vol.21, No.2, pp.126-131 (in Russian).
  • [24] Shevkunov S.V. (1995b): Nucleation of water vapor on the surface of a silver iodide crystal: Numerical experiment. - Journal of Experimental and Theoretical Physics (JETP, American Institute of Physics), vol.81, No.4, pp.753-769.
  • [25] Shevkunov S.V. (1996): Numerical simulation of the hydration of Ag+ and I~ ions in a wide temperature range. - Elektrohimiya, vol.32, No.8, pp.942-954.
  • [26] Shevkunov S.V. (1998a): The stability of water clusters on hydronium ions formed under the conditions of radioactive contamination of atmosphere. - Doklady Akademi Nauk, vol.363, No.2, pp.215-218 (in Russian).
  • [27] Shevkunov S.V. (1998b): Computer simulation of hydrogen shell of OH- ion at molecular level. Thermodynamic properties. - Elektrohimia, vol.34, No.8, pp.860- 868 (in Russian).
  • [28] Shevkunov S.V. (1999): The problem of description of the exchange and spin states in Feynman representation of quantum statistics. - Doklady Akademi Nauk, vol.369, No.l, pp.43-46 (in Russian).
  • [29] Shevkunov S.V. and Bauman E.G. (2000): The interaction of electromagnetic waves with ionized air in the presence of H + (H2o)n cluster ions. - Matematicheskoe Modelirovanie, vol.12, No.9, pp.45-51 (in Russian).
  • [30] Shevkunov S.V. and Vegiri A. (2000): A revised many-body potential energy function for the description of the protonated water clusters. - Molecular Physics, vol.98, No.3, pp. 149-160.
  • [31] Shevkunov S.V. (2000): Exchange symmetry in a system of nonrelativistic spin-1/2 fermions in the Feynman quantum statistics representation. — Journal of Experimental and Theoretical Physics, vol.91, No.l, pp.31-50 (translation from Russian).
  • [32] Van Gunsteren W.F. and Berendsen H.J.C. (1977): Algorithmus for macromolecular dynamics and constraint dynamics. - Mol. Phys., vol.34, No.5, pp. 1311-1327.
  • [33] Vegiri A. and Shevkunov S.V. (2000): Hydration shell structure of the OH - (H20)i = 1-J5 clusters from a model potential energy function. - J. Chem. Phys., vol.l 13, No.19, pp.8521-8530.
  • [34] Zamalin V.M., Norman G.E. and Filinov V.S. (1977): Monte Carlo Method in Statistical Thermodynamics. - Moscow: Science (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0001-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.