PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computational challenges in MEMS

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small sensors and actuators made from materials like silicon, quartz or plastic are already parts of our everyday life. In cars there are often silicon sensors measuring acceleration, tyre pressure and car roll-over. There may be microfabricated mechanical components inside your light projector or in your ink-jet printer. In the future, microsystems are believed to be widespread, being used for environment monitoring, safety systems, medical care and biochemical analyses. The small mechanical elements are easily integrated in electrical circuits that control their behaviour, process their output signals or interconnect several active and passive elements in a control system. Behaviour of the mechanical elements is often governed by interacting elastic forces, electromagnetic forces and forces due to surrounding fluids. Computation of the behaviour is therefore complicated. Engineers working with macroscopic constructions like oil-platforms, where mechanical and fluid forces interact, face similar challenges. Experiences and research results from the macroscopic world are therefore of great importance for the design of microsystems. Microsystem elements usually involve micrometer sized features. The small scale introduces effects that are negligible on larger scales, such as strong surface forces. In addition, the continuum hypothesis may break down in some problems, excluding the use of partial differential equations describing the behaviour. There are also fundamental physical effects occurring on small scales that are not yet understood. An important task in microsystems design is to develop reduced-order macromodels that capture the essential behaviour of a mechanical microelement. The complicated electrical circuits controlling the mechanical elements need to be optimised, and this will be too time-consuming without simplified descriptions. We present examples of microsystems, outline current computational technology and some remaining challenges in these fields.
Rocznik
Strony
173--185
Opis fizyczny
Bibliogr. 20 poz.., rys.
Twórcy
autor
  • SINTEF Electronics and Cybernetics Forskningsveien 1, N-0314 Oslo, Norway
Bibliografia
  • [1] ANSYS (2001): web site: www.ansys.com/action/MEMSinitiative/index.htm.
  • [2] Bashir R., Gupta A., Neudeck G.W., McElfresh M. and Gomez R. (2000): On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. - Journal of Micromechanics and Microengineering, vol. 10, No.4, pp.483-491.
  • [3] Bums M.A., Johnson B.N., Brahmasandra S.N., Flandique K., Webster J.R., Krishm M., Sammarco T.S., Man P.M., Jones D., Heldsinger D., Mastrangelo C.H. and Burke D.T. (1998): An integrated nanoliter DNA analysis device. - Science, vol.2l No.5388, pp.484-487.
  • [4] Cadence (2001): web site: www.cadence.com.
  • [5] CFDRC (2001): web site: www.cfdrc.com.
  • [6] Coventor (2001): web site: www.coventor.com.
  • [7] Gerlach G. and Klein A. (1998): Strategies of modelling and simulation of microsystems with electromechanical energy conversion. - Microelectronics Journal, vol.29, No.11, pp.773-783.
  • [8] Ho C.M. and Tai Y.C. (1998): Micro-electro-mechanical-systems (MEMS) and fluid flows. - Annual Review of Fluid Mechanics, vol.30, pp.579-612.
  • [9] Koplik J. and Banavar J.R. (1995): Continuum deductions from molecular hydrodynamics. - Annual Review of Fluid Mechanics, vol.27, pp.257-292.
  • [10] Lim M.K., Du H., Su C. and Jin W.L. (1999): A micromachined piezoresistive accelerometer with high sensitivity: design and modelling. - Microelectronic Engineering, vol.49, No.3-4, pp.263-272.
  • [11] Maluf N. (2000): An Introduction to Microelectromechanical Systems Engineering. - Boston-London: Artech House.
  • [12] Mentor (2001): web site: www.mentor.com
  • [13] Mohamed G.H. (1999): The fluid mechanics of microdevices - the freeman scholar lecture. - Journal of Fluids Engineering, vol. 121, pp.5-32 .
  • [14] Oran E.S., Oh C.K. and Cybyk B.Z. (1998): Direct simulation Monte Carlo: recent advances and applications. - Annual Review of Fluid Mechanics, vol.30, pp.403-441.
  • [15] Pan F., Kubby J., Peeters E., Tran A.T. and Mukherjee S. (1998): Squeeze film damping effect on the dynamic response of a MEMS torsion mirror. - Journal of Micromechanics and Microengineering, vol.8, No.3, pp.200-208.
  • [16] Petersen K. (1982): Silicon as a mechanical material. - Proc. IEEE, vol.70, pp.420-56.
  • [17] Senturia S.D. (2001): Microsystem Design. - Boston: Kluwer Academic Publishers.
  • [18] Senturia S.D., Aluru N. and White J. (1997): Simulating the behaviour of MEMS devices: computational methods and needs. - IEEE Computational Science and Engineering, vol.4, No.l, pp.30-43.
  • [19] Tilmans H.A.C. (1996): Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. - J. Micromech. Microeng., vol.6, pp. 157-176.
  • [20] Zhang Z.L., Vitorovich N., Westby E. and Wang D.T. (2001): Notch fracture of MEMS sensors made of single crystal silicon. - In: Proceedings of The Tenth International Conference on Fracture, December 2-6, 2001, Hawaii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0001-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.