PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD-simulation and installation effects for ultrasonic flow meters in pipes with bends

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multipath ultrasonic transit time flow meters (USM) represent an alternative to conventional meters for fiscal gas flow measurement. When the meter is installed close to bend(s), the flow profile can be quite complex, with asymmetric axial and transversal flow profiles. To investigate the accuracy of the measurement in such situations, computational fluid dynamic (CFD) simulations of 3D flow in various bend configurations have been carried out with the finite volume CFD-code MUSIC-2.0. Simulations are compared with measurements in straight pipes of fully developed and rotating flows over a range of Reynolds numbers as well as data for one- and two-bend pipes. The question of grid independence is addressed, as well as the accuracy of the turbulence model. Calculated flow profiles are used as input to the USM uncertainty model GARUSO. The robustness of the USM towards the Reynolds number, bend types, inlet flow profiles, meter orientation and installation length from the last bend is investigated.
Rocznik
Strony
33--64
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Christian Michelsen Research AS, Bergen, NORWAY
autor
  • Christian Michelsen Research AS, Bergen, NORWAY
autor
  • Christian Michelsen Research AS, Bergen, NORWAY
Bibliografia
  • [1] AGA (1998): Measurement of Gas by Multipath Ultrasonic Meters. - American Gas Association, Transmission Measurement Committee, Report No.9.
  • [2] Boer A. (1997): Testresults Krohne8" ultrasonic flowmeter. - In: Proc. of the North Sea Flow Measurement Workshop, October 27-30, 1997, Kristiansand, Norway.
  • [3] Daniel (2000): The Daniel SeniorSonic gas flow meter. - Daniel Flow Products, USA, Brochure.
  • [4] Durst P., Jovanovic J. and Sender J. (1995): LDA measurements in the near-wall region of a turbulent pipe flow. - J. Fluid Mech., vol.295, pp.305-335.
  • [5] Ferziger J. and Peric M. (1996): Computational Methods for Fluid Dynamics. - Berlin Heidelberg: Springer-Verlag.
  • [6] FMC (2000): MPU 1200 ultrasonic gas flow meter. - FMC Kongsberg Metering, Norway. Brochure.
  • [7] Folkestad T. (1999): Proving a fiscal 5-path ultrasonic liquid meter with a small volume ball prover. Can it be done? - In: Proc. of the 17th North Sea Flow Measurement Workshop, October 25-28, 1999, Oslo, Norway.
  • [8] Froysa K.-E. and Lunde P. (2001): A ray theory approach to investigate the influence of flow velocity profiles on transit times in ultrasonic flow meters for gas and liquid. - In: Proc. of the 24th Scandinavian Symposium on Physical Acoustics, January 28- 31, 2001, Ustaoset, Norway.
  • [9] Hallanger A.: One and Two-phase Simulation of Pipe Flow. - Ph.D. thesis, University of Bergen (in preparation).
  • [10] Instromet (2000): Ultrasonic gas flow meters. - Instromet International N.V., Belgium. Brochure.
  • [11] ISO (1997): Measurement of fluid flow in closed conduits. Methods using transit time ultrasonic flowmeters. - ISO, Geneve, Switzerland, ISO/TR 12765:1997.
  • [12] Jones W. and Launder B. (1972). The prediction of laminarization with a two-equation model of turbulence. - International Journal of Heat and Mass Tranfer, vol. 15, pp.301-314.
  • [13] Laufer J. (1952): The Structure of Turbulence in Fully Developed Pipe Flow. - Report No. 1174, National Bureau of Standards.
  • [14] Leer B.V. (1974): Towards the ultimate conservative differencing scheme II: Monotonicity and conservation combined in a second-order scheme. - J. Comp. Phys., vol. 14, pp.361-370.
  • [15] Leonard B. (1979): A stable and accurate connective modeling procedure, based on quadratic upstream interpolation. - Comp. Methods Appl. Mech. Eng., vol. 19, pp.59-98.
  • [16] Lunde P., Froysa K.-E., Fossdal J. and Heistad T. (1999). Functional enhancements within ultrasonic gas flow measurement. - In Proc. of the 17th North Sea Flow Measurement Workshop, October 25-28, 1999, Oslo, Norway.
  • [17] Lunde P., Froysa K.-E. and Vestrheim M. (1997):. GARUSO-Version 1.0. Uncertainty Model for Multi-path Ultrasonic Transit Time Gas Flow Meters. - CMR Report No.CMR-97-A10014, Christian Michelsen Research AS, Bergen.
  • [18] Lunde P., Froysa K.-E. and Vestrheim M. (2000a). Challenges for improved accuracy and traceability in ultrasonic fiscal flow metering. - In: Proc. of the 18th North Sea Flow Measurement Workshop, October 24-27, 2000, Gleneagles, Scotland.
  • [19] Lunde P., Froysa K.-E. and Vestrheim M., Eds. (2000b): GERG Project on Ultrasonic Gas Flow Meters, Phase II. - GERG Technical Monograph TM 11, Groupe Europeeen de Recherches Gazieres. Düsseldorf: VDI Verlag.
  • [20] McCartney M., Mudd C. and Livengood R. (1979): A corrected ray theory for acoustic velocimetry. - J. Acoust. Soc. Am., vol.65, pp.50-55.
  • [21] Muzaferija S. (1994): Adaptive Finite Volume Method for Flow Predictions Using Unstructured Meshes and Multigrid Approach. - Ph.D. thesis, University of London.
  • [22] NPD (1997): Regulations Relating to Fiscal Measurement of Oil and Gas etc. - Norwegian Petroleum Directorate, Stavanger, Norway.
  • [23] Patankar S. (1980): Numerical Heat Transfer and Fluid Flow. - New York: McGraw- Hill.
  • [24] Perry A., Henbest S. and Chong M. (1986): A theoretical and experimental study of wall turbulence. - J. Fluid Mech., vol. 165, pp. 163-199.
  • [25] Rhie C. and Chow W. (1993): A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. - AIAA Journal, vol.21, pp. 1525-1532.
  • [26] Sattary J., Reader-Harries M. and Johnstone L. (1996): Computation of flow through bends. - In: Proceedings from North Sea Flow Metering Work Shop, October 28-31, 1996, Peebles, Scotland.
  • [27] Speziale C. (1987): On nonlinear k-l and […] models of turbulence. - Journal of Fluid Mechanics, vol. 178, pp.459-475.
  • [28] Sleenbergen W. (1995): Turbulent Pipe Flow with Swirl. - Ph.D. thesis, Eindhoven University of Technology.
  • [29] Stone H. (1968): Iterative solution of implicit approximations of multidimensional partial differential equations. - SIAM J. Numer. Anal., vol.5, pp.530-558.
  • [30] den Toonder J. (1995): Drag Reduction by Polymer Additives in a Turbulent Pipe Flow. - Ph.D. thesis, Delft University of Technology, The Netherlands.
  • [31] Wilcox D. (1988): Reassessment of the scale determining equation for advanced turbulence models. - AIAA Journal, vol.26, No. 11, pp. 1299-1310.
  • [32] Wilcox D. (1998): Turbulence Modeling for CFD. - DCW Industries Inc, California, USA, 2nd edition.
  • [33] Wyler J. (1976): Fluid Flow Measurement System for Pipes. - US Patent No.3940985.
  • [34] Zagarola M. and Smits A. (1997): Experiments in high Reynolds number turbulent pipe flow. - Phys. Rev. Lett., vol.78, No.2, pp.239-242.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0001-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.